
Impact Command Reference Manual
Impact: Integrated Modeling Program using Applied Chemical Theory

Version 5.5, May 2009

For inquiries about Impact

Schrödinger
101 SW Main St., Suite 1300
Portland, OR 97204
503–299–1150
503–299–4532 fax
Email: help@schrodinger.com



Copyright c© 2009 Schrödinger, LLC All rights reserved.

CombiGlide, Epik, Glide, Impact, Jaguar, Liaison, LigPrep, Mae-
stro, Phase, Prime, QikProp, QikFit, QikSim, QSite, SiteMap, and
Strike are trademarks of Schrödinger, LLC. Schrödinger and Macro-
Model are registered trademarks of Schrödinger, LLC.
The C and C++ libraries for parsing PDB records are a copyrighted
work (1989) of the Regents of the University of California. All
rights reserved.
To the maximum extent permitted by applicable law, this pub-
lication is provided “as is” without warranty of any kind. This
publication may contain trademarks of other companies.
Please note that any third party programs (“Third Party Pro-
grams”) or third party Web sites (“Linked Sites”) referred to in
this document may be subject to third party license agreements
and fees. Schrödinger, LLC and its affiliates have no responsibility
or liability, directly or indirectly, for the Third Party Programs or
for the Linked Sites or for any damage or loss alleged to be caused
by or in connection with use of or reliance thereon. Any warranties
that we make regarding our own products and services do not apply
to the Third Party Programs or Linked Sites, or to the interaction
between, or interoperability of, our products and services and the
Third Party Programs. Referrals and links to Third Party Pro-
grams and Linked Sites do not constitute an endorsement of such
Third Party Programs or Linked Sites.

Impact Version 55108
May 2009



Chapter 1: Introduction to Impact

1 Introduction to Impact

ImpactTM (Integrated Modeling Program using Applied Chemical Theory) is
an integrated program for molecular mechanics simulations.1 It allows the
user to define the simulation system (usually a protein or DNA molecule in
aqueous solution) and to perform Monte Carlo or molecular dynamics sim-
ulations. In addition, the user has at her/his disposal a whole array of tools
for analyzing the results of the simulations. Finally, Impact is the “driver”
for the high-throughput ligand screening program GlideTM, the LiaisonTM

module for calculating ligand binding energies, and the mixed mode Quan-
tum Mechanics/Molecular Mechanics program QSiteTM.
This is the Impact Command Reference Manual. It documents using Impact
from the command-line, and all the keywords of Impact input files. Running
Impact from Maestro, and discussion of the principal applications Glide,
Liaison, and QSite, are more fully documented in other manuals:
• Glide Quick Start Guide

A collection of tutorial examples that illustrate the use of Glide.
• Glide User Manual

A description of Glide, focusing on its use from Maestro.
• Glide Technical Notes

A collection of case studies elaborating on the scientific methods and
results of Glide.

• Liaison User Manual

A description of Liaison, including its use from Maestro, a tutorial, and
notes on the scientific methods and results.

• QSite User Manual

A description of QSite, including its use from Maestro, a tutorial, and
notes on the scientific methods and results.

1.1 A Brief History of Impact
The current commercial version of Impact and the Glide, Liaison, and QSite
products was developed from the academic Impact originally designed in the
laboratory of Professor Ronald M. Levy at Rutgers University. The following
people have contributed to the development of Impact:

1.1.1 Commercial Versions

• v5.0 (June 2008) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, Rob Murphy, and Matt Repasky

1 J. L. Banks et al., J. Comp. Chem., 26, 1752-1780 (2005)

Impact 5.5 Command Reference Manual 1



Chapter 1: Introduction to Impact

• v4.0 (November 2005) Jay Banks, Yixiang Cao, Wolfgang Damm,
Richard Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy,
Daniel Mainz, Rob Murphy, Matt Repasky, and Linda Zhang.

• v3.5 (January 2005) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, Rob Murphy, Matt Repasky, and Linda Zhang.

• v3.0 (June 2004) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, Rob Murphy, and Matt Repasky.

• v2.7 (October 2003) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, Rob Murphy, and Matt Repasky.

• v2.5 (January 2003) Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, and Rob Murphy.

• v2.0 (June 2002). Jay Banks, Yixiang Cao, Wolfgang Damm, Richard
Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy, Daniel
Mainz, and Rob Murphy.

• v1.8 (September 2001). Jay Banks, Yixiang Cao, Wolfgang Damm,
Richard Friesner, Emilio Gallicchio, Thomas Halgren, Ronald Levy,
Daniel Mainz, and Rob Murphy.

• v1.7 (March 2001). Jay Banks, Yixiang Cao, Richard Friesner, Emilio
Gallicchio, Thomas Halgren, Ronald Levy, Daniel Mainz, Rob Murphy,
and Ruhong Zhou.

• v1.6 (November 2000). Jay Banks, Michael Beachy, Yixiang Cao,
Richard Friesner, Emilio Gallicchio, Ronald Levy, Daniel Mainz, Rob
Murphy, and Ruhong Zhou.

• v1.0 (June 1999). Jay Banks, Richard Friesner, Emilio Gallicchio, Avi-
jit Ghosh, Ronald Levy, Rob Murphy, Anders Wallqvist, and Ruhong
Zhou.

• v0.95 (Nov 1998). Jay Banks, Richard Friesner, Emilio Gallicchio, Avi-
jit Ghosh, Ronald Levy, Rob Murphy, Anders Wallqvist, and Ruhong
Zhou.

• v0.9 (Aug 1998). Jay Banks, Mark Friedrichs, Richard Friesner, Emilio
Gallicchio, Avijit Ghosh, Ronald Levy, Rob Murphy, Anders Wallqvist,
and Ruhong Zhou.

• v0.8 (May 1998). Jay Banks, Chris Cortis, Shlomit Edinger, Mark
Friedrichs, Richard Friesner, Emilio Gallicchio, Avijit Ghosh, Ronald
Levy, Rob Murphy, Anders Wallqvist, and Ruhong Zhou.

1.1.2 Academic Versions

2 Impact 5.5 Command Reference Manual



Chapter 1: Introduction to Impact

• V7.0 (August 1996). Jay Banks, Yanbo Ding, Gabriela Del Buono,
Francisco Figueirido, Ronald Levy, and Ruhong Zhou.

• V6.0 (January 1994). Les Clowney, Francisco Figueirido, Ronald Levy,
Lynne Reed, Maureen Smith-Brown, Asif Suri and John Westbrook.

• V5.8 (December 10, 1991). Les Clowney, Francisco Figueirido, Douglas
Kitchen, Ronald Levy, Maureen Smith, Asif Suri and John Westbrook.

• V5.7 (December 17, 1990). Steve Back, Teresa Head-Gordon, Douglas
Kitchen, Dorothy Kominos, Ronald Levy and John Westbrook.

• V5.5 and earlier (June 1990). Steve Back, Donna Bassolino, John
Blair, Fumio Hirata, Douglas Kitchen, David Kofke, Dorothy Kominos,
Ronald Levy, Asif Suri and John Westbrook.

1.2 Major Features
The major features of Impact include:
• Energy Minimization
• Molecular Dynamics
• Fast Multipole Method (FMM)
• Multiple Time-step Algorithm r-RESPA
• S-Walking/J-Walking Methods
• Explicit Solvation Model
• Poisson-Boltzmann Continuum Solvation (PBF)
• Surface Generalized Born Solvation Model (SGB)
• OPLS-AA with Automatic Atomtype Recognition
• Flexible Schemes for Freezing Part of System
• QSite: Mixed-Mode QM/MM Simulations for Reactive Chemistry
• Liaison: Calculating and Predicting Ligand Binding Energies
• Glide: High-Throughput Ligand-Receptor Docking

1.3 Hardware Requirements
Schrödinger tests and distributes Glide 5.5, Liaison 5.5 and QSite 5.5 for
SGI IRIX, IBM AIX, and Intel-x86 compatible Linux-based machines at
this time. Impact 5.5 is not distributed separately from these products. For
current information on other platforms, please contact Schrödinger.

1.4 Installation
To install Glide, Liaison, or QSite, see the Schrödinger Installation Guide. A
PDF version of this manual and product documentation should be on your
product CD.
For those that want to get started quickly, installation is often as easy as
running:

Impact 5.5 Command Reference Manual 3



Chapter 1: Introduction to Impact

% /bin/sh INSTALL

from the CD, and following the prompts. But please see the Installation
Guide.
After installation, in the directory specified by your $SCHRODINGER environ-
ment variable, there should be an Impact directory labelled with the current
version number, at this printing, this is ‘impact-v55108’. In that directory,
there are seven subdirectories:

bin/ The executable binary and scripts for running all manner of
Impact-based jobs. Since these are platform-dependent, these
files are separated into further subdirectories with their plat-
form’s designation, e.g. Linux-x86/.

data/ The database parameters for the AMBER and the OPLS series
of force fields.

docs/ Electronic versions of the Impact Reference Manual (this docu-
ment) are located here.

lib/ Platform-dependent shared libraries needed by Impact are kept
here.

disabled_lib/
Disabled shared libraries, moved from the ‘lib/’ subdirectory
should be kept here. Disabling libraries should only be done
within Schrödinger’s recommendations.

samples/ The example files noted in this manual’s appendices.

tutorial/
Files that correspond to the instructional material in the Glide
Quick Start Guide, Liaison User Manual, and QSite User Manual
that walks you through various types of calculations.

A file ‘compatibility’ is also in your ‘impact-v55108’ directory, listing the
minimum version numbers of other Schrödinger products compatible with
this Impact release. All Schrödinger startup scripts will use this information
automatically.
The single important environment variable each Impact user has to have is
$SCHRODINGER. It should be set to your top-level installation directory for
Schrödinger products, e.g. /usr/local/bin/schrodinger. If you plan on
using some of the utility scripts from a command-line interface, you might
like to add the directory $SCHRODINGER/utilities to your PATH enviroment
variable, so that the scripts in this directory are accessible by name without
the full directory name prepended. If your command-line shell is sh, ksh, or
bash, this is done by:

(sh/ksh/bash)% export PATH=$PATH:$SCHRODINGER/utilities

and if your shell is csh or tcsh, then do:
(csh/tcsh)% setenv PATH $PATH:$SCHRODINGER/utilities

4 Impact 5.5 Command Reference Manual



Chapter 1: Introduction to Impact

To run an Impact example, first make sure that $SCHRODINGER is set to your
Schrödinger installation directory. Then cd to one of example directory and
type:

% $SCHRODINGER/impact -i input_file -o log_file

This will read from the input file and write the log file to log file. If -o is
not specified, Impact will set the log file name to be the same as your input
file, but with a .log extension in place of .inp.
Note that the log file (stdout) is not the file specified in the top write
command in the input file, which is usually more detailed than the log file.
Just typing impact with no arguments is equivalent to typing main1m: the
program then looks for an input file named ‘fort.1’, and writes to standard
output.
If an input file is specified but a log file is not, Impact constructs the log
file name by appending the suffix .log to the input file name, after first
removing the suffix .inp if it is present. Thus

% $SCHRODINGER/impact -i myfile

and
% $SCHRODINGER/impact -i myfile.inp

will both result in writing a log file called myfile.log.

1.5 Input Files
Instructions for Impact are placed in the main input file, which is then given
as the -i argument to the impact execution script.2 The program executes
commands in the input file sequentially, or as directed by control structures
in Impact’s input scripting language, DICE. See Chapter 4 [Advanced Input
Scripts], page 131, for details of control structures, variables, and advanced
features of DICE. Here is a simple example:

WRITE file example.out -

title Example *

CREATE

build primary name species1 type auto read maestro -

file "example.mae"

build types name species1

QUIT

SETMODEL

setpotential

mmechanics consolv agbnp

quit

read parm file paramstd noprint

energy parm cutoff 9.5 listupdate 10 diel 1.0 nodist

energy rescutoff byatom all

2 Historically, the main input file had to be assigned to FORTRAN unit number 1, which
usually as the filename ‘fort.1’. The name may be different on other machines.

Impact 5.5 Command Reference Manual 5



Chapter 1: Introduction to Impact

zonecons auto

QUIT

DYNAMICS

input cntl -

nstep 1000 delt 0.001 stop rotations -

constant totalenergy nprnt 50 tol 1.e-7

run

write maestro file "example_out.mae"

QUIT

END

The input file always begins with a description of where to write the output
generated by Impact during its execution, and ends with the keyword end
on a single line. The following meta-example is the simplest legal Impact
program:

write file fname title your_favorite_title *

end

An optional verbose value argument before the * specifies the verbosity of
output from various parts of Impact.
After the opening write statement, one specifies a sequence of tasks that
Impact should execute. In Impact tasks correspond to a high-level descrip-
tion of the computer experiment. For example, the task create sets up the
internal variables describing the molecular structure of the system of inter-
est, while inside of task dynamics one runs a molecular dynamics simulation.
Typically it is important that tasks are executed in the correct order, which
is usually dictated by common sense (the least common of the senses).3

A task by itself does not produce any side effects. For instance, the fragment
create

quit

would do exactly nothing. When Impact begins executing a task it sets up a
special environment, which is task-dependent. This environment exists until
the keyword quit is encountered, closing the task. Within each of these
environments different collections of commands (subtasks) are in effect. For
instance, within the create task one can execute the subtask build, but it
is not defined inside of the task dynamics. Trying to execute build inside
of the latter task would lead to an error.
Impact requires that tasks (as well as their matching quit) be declared on
a line by themselves. Subtasks, on the other hand, come in several flavors.
They must always be the first non-blank word on a line and most often they
are followed on the same line by a series of subtask-specific keywords and

3 For example, few people we know would run a dynamics simulation before setting the
system up.

6 Impact 5.5 Command Reference Manual



Chapter 1: Introduction to Impact

parameter values. A few, however, have the same formatting requirements
as tasks do, and must be ended by the keyword quit.4

In general, task and subtask names can be abbreviated by giving the first
four characters of the full name. In addition, some special abbreviations are
recognized. For example: minimize can be entered as minm; energy can be
given as enrg (as illustrated above); . . .
Because Impact is written mostly in FORTRAN the implementation puts a
limit on the maximum length of a line of 2000 characters. As the lines are
scanned lowercase letters are automatically converted to uppercase, unless
protected as shown below.5 The following characters are special:
‘"’ To protect a word and preserve the case. For example, if you

want to open a file named ‘/home/me/FooBar’, you must write
‘"/home/me/FooBar"’.

‘!’ An exclamation point ‘!’ flags a comment, and anything follow-
ing it until the end of the line is not read or processed.

‘-’ A hyphen at a line’s end indicates the command is continued on
the next line of the input file. Note that there should be at least
one space before the hyphen and that the sum of the lengths of
the continued lines must not exceed the limit of 2000 characters.

‘$’ String constants are delimited by this character as in ‘$foo$’.
‘’’ The quote is used to delimit names of variables used in Impact

input files, as in ‘while ’foo’ lt 10’.
‘*’ Sometimes portions of command lines are terminated with an

asterisk. It is required wherever it appears in the examples.
The top level of Impact is the task level where the objects of primary interest
are described, such as system creation, molecular dynamics or energy mini-
mization. When describing tasks in this documentation, meta-examples are
generally used, where the following conventions are followed. The order of
the keywords inside a subtask is generally not important though, of course,
a keyword cannot be separated from its value when one is required.
keywords that should be typed exactly as shown will appear in this font.

Some keywords may be abbreviated by an initial portion of the
word, and the examples in this manual contain some such abbre-
viations; but in the absence of such an example, use the entire
keyword as shown.

variables
are meta-keywords, that is, you must replace variable with the
appropriate keyword, number, or filename.

4 They act like secondary level tasks.
5 File names that are not protected are actually converted back to lowercase before opening

the file.

Impact 5.5 Command Reference Manual 7



Chapter 1: Introduction to Impact

[ ] is used to delimit keywords that are optional; an extra character,
‘+’ or ‘*’, may also be present. [ ]+ means to repeat the contents
one or more times and [ ]* to repeat the contents zero or more
times.6 For example

[ foo | bar | baz ]

means that one of the keywords foo or bar or baz may be used
in this location. If there are no ‘|’ characters present the body
is always optional, and if there is a a ‘+’ immediately following
the ‘]’, as in ‘[ foo ]+’, then repeat the contents 1 or more times
(here 1 or more occurrences of foo).

nil stands for the “empty item,” that is, no item at all, so that ‘[
foo | nil ]’ is equivalent to ‘[ foo ]’.

( ) in an example indicates that the contents of the parentheses is
repeated as many times as indicated by the following expres-
sion. In the following expression the symbols ‘foo bar baz’ are
repeated four times.

( foo bar baz ) repeated four times

Using the above rules, the meta-example
You should [ run | debug ] Impact [ when it rains | nil ]

is expanded in any of the following statements

You should run Impact when it rains

You should debug Impact when it rains

You should run Impact

You should debug Impact

One instance of a meta-example for the minimization task is:
minimize

read restart coordinates formatted file fname

steepest dx0 value dxm value deltae value

run

write restart coordinates formatted file fname

quit

where value refers to the value to be assigned to the preceding keyword, and
fname refers to a file name.7

Some keywords are common to many different tasks and subtasks, so they
are described here.

file This keyword must be followed by the name of a file. In the
meta-examples this is generally shown as fname.8

6 The other potential uses of the square brackets are discussed in Section 4.1.1 [Lists (Back-
ground)], page 132.

7 Value and number are usually equivalent to real and integer. Val or num are also used in
this context.

8 To refer to the file ‘junk’ you would type ‘file junk’.

8 Impact 5.5 Command Reference Manual



Chapter 1: Introduction to Impact

name This keyword must be followed by the name of a species. In the
meta-examples this is generally shown as spec.

resnumber
This keyword must be followed by the number (integer value)
of a residue. In the meta-examples this is generally shown as
resn. It should be noted that residue numbers supplied in the
main input file have the following meanings: positive numbers
mean the residue numbering used in the original PDB file; neg-
ative numbers mean the reordered Impact residue numbers (i.e.,
sequential, starting with 1); 0 means all applicable residues.

atname This keyword must be followed by the name (character string)
of an atom. In the meta-examples this is generally shown as
atna.

fresidue

lresidue These keywords should be followed by a number specifying the
first and last residues of interest in the primary sequence.

echoon

echooff These keywords can appear at the task level, or the subtask level
of task analysis. They turn on or off the printing of certain
output. The default is echoon.

An aid to gauging the correctness of an input file is that, in general, as each
command is processed it is deleted from the command line. When processing
is finished, a check is made to see that no characters remain. The presence
of extraneous characters indicates that the input file was incorrectly formed.

1.6 Structure File Formats
Via the build primary type auto (see Section 2.2.1.1 [Auto (primary
type)], page 17) and build types (see Section 2.2.1.3 [Types (build)],
page 20) commands, Impact can read and write Maestro, MDL SD, and
PDB files.
The freely available program Babel is a program that converts different file
formats, and currently supports input file formats:

Input file type

1. Alchemy 2. AMBER PREP

3. Ball and Stick 4. MSI BGF

5. Biosym .CAR 6. Boogie

7. Cacao Cartesian 8. Cambridge CADPAC

9. CHARMm 10. Chem3D Cartesian 1

11. Chem3D Cartesian 2 12. CSD CSSR

13. CSD FDAT 14. CSD GSTAT

15. Dock PDB 16. Feature

17. Free Form Fractional 18. GAMESS Output

Impact 5.5 Command Reference Manual 9



Chapter 1: Introduction to Impact

19. Gaussian Z-Matrix 20. Gaussian Output

21. Hyperchem HIN 22. MDL Isis

23. Mac Molecule 24. Macromodel

25. Micro World 26. MM2 Input

27. MM2 Ouput 28. MM3

29. MMADS 30. MDL MOLfile

31. MOLIN 32. Mopac Cartesian

33. Mopac Internal 34. Mopac Output

35. PC Model 36. PDB

37. JAGUAR Input 38. JAGUAR Output

39. Quanta 40. ShelX

41. Spartan 42. Spartan Semi-Empirical

43. Spartan Mol. Mechanics 44. Sybyl Mol

45. Sybyl Mol2 46. Conjure

47. UniChem XYZ 48. XYZ

49. XED 50. M3D

and output file formats:
Output file type

1. DIAGNOSTICS 2. Alchemy

3. Ball and Stick 4. BGF

5. Batchmin Command 6. Cacao Cartesian

7. Cacao Internal 8. CAChe MolStruct

9. Chem3D Cartesian 1 10. Chem3D Cartesian 2

11. ChemDraw Conn. Table 12. MSI Quanta CSR

13. Dock Database 14. Wizard

15. Conjure Template 16. CSD CSSR

17. Feature 18. Fenske-Hall ZMatrix

19. Gamess Input 20. Gaussian Cartesian

21. Gaussian Z-matrix 22. Gaussian Z-matrix tmplt

23. Hyperchem HIN 24. Icon 8

25. IDATM 26. Isis

27. Mac Molecule 28. MacroModel

29. Micro World 30. MM2 Input

31. MM2 Ouput 32. MM3

33. MMADS 34. MDL Molfile

35. Mopac Cartesian 36. Mopac Internal

37. PC Model 38. PDB

39. JAGUAR Z-Matrix 40. JAGUAR Cartesian

41. Report 42. Spartan

43. Sybyl Mol 44. Sybyl Mol2

45. MDL Maccs file 46. XED

47. UniChem XYZ 48. XYZ

49. M3D

Before you run babel, you need to setup an environmental variable $BA-
BEL DIR:

% setenv BABEL_DIR your_babel_directory

% export BABEL_DIR= your_babel_directory

The easiest way to run babel is in manual mode:
% babel -m

10 Impact 5.5 Command Reference Manual



Chapter 1: Introduction to Impact

and follow instructions to select desired input and output file formats. You
can also run babel from the command line, as in

% babel -ix myfile.xyz -renum -oai myfile.dat "AM1 MMOK T=30000"

This will create a MOPAC input file with atom 1 from myfile.xyz as atom
1 in myfile.dat. For details of how to run babel, etc, consult the README
files under the babel directory. babel also comes with Schrödinger’s product
Jaguar, and is accessible therein via the jaguar babel command.

1.7 Force Field
In molecular modeling there are several different force fields used to de-
scribe the interactions among atoms and molecules. Some of the well known
ones are OPLS, MMFF, AMBER, MM3, CHARMm, and GROMOS. Im-
pact currently supports OPLS-AA9 along with a polarizable OPLS force
field methodology under active development in Schrödinger as described in
more detail below.

1.7.1 OPLS-AA

The OPLS-AA force field, which was developed by the Jorgensen group, is
an effort to develop a parameterization that reproduces liquid state prop-
erties of molecules. Again this is a force field that uses experimental data
from the liquid state and quantum mechanical calculations for intramolecu-
lar bond, angle, and torsion motions to set the constituent parameters. The
intramolecular interaction is given as,

Vintra =
∑

bonds

Kr(r − req)2 +
∑

angles

Kθ(θ − θeq)2 + Vtorsion

where Vtorsion written as,

Vtorsion =
∑

i

V i
1

2
[1 + cos(φ)] +

V i
2

2
[1− cos(2φ)] +

V i
3

2
[1 + cos(3φ)] .

The non-bonded interaction is given as a van der Waals terms together with
an electrostatic term (R is again the atom-atom distance),

Vinter =
∑
i<j

[
4εij

(
σ12

ij

R12
ij

−
σ6

ij

R6
ij

)
+
qiqj

Rij

]
.

Note that in this description the dielectric constant is set to its proper value
of 1.0. For molecules containing atoms connected by a distance of more than

9 W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Amer. Chem. Soc., 118, 11225–
11235 (1996)

Impact 5.5 Command Reference Manual 11



Chapter 1: Introduction to Impact

3 bond-lengths the atom-atom interaction is given by the Vinter -term. The
(1,4)-interactions are scaled by a factor of 1/2. The non-bonded parameters
ε and σ for each atom-pair is constructed from the atomic values by the
geometric mean combination rule,

εij =
√
εiεj

σij =
√
σiσj.

It is also possible to use the partial charges read from a Maestro or Macro-
Model format structure file instead of those provided by OPLS-AA, using the
cmae keyword documented in Section 2.2.1.1 [Auto (primary type)], page 17.

1.7.2 PFF

The PFF module is only available under special license from Schrödinger.
The Polarizable Force Field (PFF) is under continuing development at
Schrödinger. For details consult the papers by Banks et al.10, and by Stern
et al.11

A brief description from Stern is presented below.
Consider a polarizable system represented by fluctuating charges qA on a set
of atoms A and induced dipoles ~µB on a (possibly overlapping or identical)
set of atoms B. The system is also subject to an “external” electrostatic
potential φ0(~r) with gradient −~E0(~r). The superscript zero denotes that this
electrostatic potential and field do not arise from the fluctuating charges or
dipoles, but from some other source, for instance, a set of fixed charges.
Each fluctuating charge qA has a self-energy χAqA+ 1

2
JAq

2
A, where χA and JA

are parameters corresponding to the atomic electronegativity and hardness.12
The interaction with the external potential gives a term φ0

AqA where φ0
A is

the value of the external potential at site A. Pairs of fluctuating charges
qA, qA′ give rise to an interaction energy qAJAA′qA′ where JAA′ depends on the
distance between sites A and A′. For instance, if we assume the interaction
is Coulombic, then

JAA′ =
1

|~rAA′ |
,

where ~rAA′ = ~rA −~rA′ is the displacement vector from site A′ to site A.
The dipolar terms are quite similar. If αB is the polarizability tensor for atom
B, then an induced dipole ~µB has a self-energy13 1

2
~µB ·α−1

B ·~µB. In addition,

10 J. L. Banks, G. A. Kaminski, R. Zhou, D. T. Mainz, B. J. Berne, and R. A. Friesner, J.
Chem. Phys. 110, 741 (1999)

11 H. A. Stern, G. A. Kaminski, J. L. Banks, R. Zhou, B. J. Berne, and R. A. Friesner, J.
Phys. Chem. B, 103, 4730 (1999)

12 S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys., 101, 6141, (1994); A. K. Rappé
and W. A. Goddard III, J. Phys. Chem., 95, 3358, (1991).

13 P. Ahlström, A. Wallqvist, S. Engström, and B. Jönsson, Mol. Phys, 68, 563 (1989)

12 Impact 5.5 Command Reference Manual



Chapter 1: Introduction to Impact

~µB interacts with the external field giving a term −~E0
B ·~µB, where ~E0

B is the
value of the field at site B. Pairs of dipoles ~µB, ~µB′ give rise to an interaction
energy ~µB · JBB′ · ~µB′ , where JBB′ depends on the locations of sites B and
B′ and must be a dyadic so that the interaction energy is independent of
the choice of coordinate system. If we assume the interaction is Coulombic,
then

JBB′ =
1

|~rBB′ |3
(

1− 3
~rBB′ ~rBB′

|~rBB′ |2
)

Finally, the fluctuating charges and dipoles interact (if they are on different
sites). Each pair of fluctuating charges qA, ~µB gives an interaction energy
qA
~JAB · ~µB. As before ~JAB depends on the locations of sites A and B and

in this case is a vector. Assuming the interaction is Coulombic,

~JAB =
~rAB

|~rAB|3
.

The total electrostatic energy due to the fluctuating charges and dipoles may
therefore be written

U =
∑
A

(χA + φ0
A) qA −

∑
B

~E0
B · ~µB +

1
2

∑
A

JA q
2
A +

1
2

∑
B

~µB · α−1 · ~µB′+

1
2

∑
A 6=A′

qA JAA′ qA′ +
1
2

∑
B 6=B′

~µB · JBB′ · ~µB′ +
∑
AB

qA
~JAB · ~µB.

It is convenient to define JAA ≡ JA and JBB ≡ α−1
B ; in this case the energy

may be written slightly more simply:

U =
∑
A

(χA + φ0
A) qA −

∑
B

~E0
B · ~µB +

1
2

∑
AA′

qA JAA′ qA′+

1
2

∑
BB′

~µB · JBB′ · ~µB′ +
∑
AB

qA
~JAB · ~µB.

(1)

Let us now define NA +3NB dimensional vectors q and v, and an NA +3NB

by NA + 3NB matrix J, where NA is the number of fluctuating charges and
NB is the number of dipoles:

q ≡ (qA, ~µB)

v ≡ (χA + φ0
A,−~E0

B)

J ≡
(
JAA′ , ~JAB′ , ~J †

A′B,JBB′

)
,

Then above equation may be written succinctly as a matrix equation:

U = v†q +
1
2
q†Jq.

Impact 5.5 Command Reference Manual 13



Chapter 1: Introduction to Impact

For any given set of atomic electronegativities χA and values for the external
potential and field φ0 and ~E0 at the sites A and B, the fluctuating charges
and induced dipoles are determined by minimizing eq. (1) with respect to
each variable qA, ~µB. It can be seen that in the case of an all-dipole system,
this is equivalent to imposing the usual self-consistent field requirement on
the induced dipoles. If, as in this case, there are no constraints on the
variables, then minimizing leads to a set of linear equations whose solution
is

q = −J−1v.

Constraints on the fluctuating charges, such as the requirement that each
molecule remain neutral, may be handled by the method of Lagrange multi-
pliers, or by a transformation to a reduced set of unconstrained coordinates
q′, where C†q′ = q for some matrix C. In this case the solution is given by

q = −C†(CJC†)−1Cv.

We note that the response ∆q to any additional perturbation ∆v, for in-
stance, an external, applied electrostatic potential or field from additional
charges—is simply

∆q = −J−1 ∆v

∆q = −C†(CJC†)−1C ∆v,

for unconstrained and constrained coordinates, respectively. The response to
external perturbations does not depend on v—that is, on the electronegativ-
ities and original fixed charges we have placed in the system. A polarization
model for a given molecule therefore involves a specification for the elements
of the matrix J, that is, the interactions between pairs of fluctuating charges
and dipoles.

1.8 Online Documentation
Schrödinger publishes PDF versions of all product manuals at the website
http://www.schrodinger.com/Support/pdf.html. An up-to-date copy of
this manual, the Impact Command Reference Manual, along with other man-
uals, are linked there.

14 Impact 5.5 Command Reference Manual

http://www.schrodinger.com/Support/pdf.html


Chapter 2: Setup System

2 Setup System

This chapter describes tasks to set up Impact simulations: create system,
and set up models, etc. This should be done before any real simulation tasks
can be performed.

2.1 Set commands
These commands are not true tasks, in that they are completely specified
on one line, with no subtasks and no quit keyword. They are used to
specify conditions of the Impact execution that typically remain the same
throughout the duration of the program, so they should usually occur at
the beginning of the input file, either immediately after or even before the
initial write command that specifies the main output file. In particular,
set ffield may have unpredictable results if it occurs in the middle of an
input script, or if two or more set ffield commands are issued in the same
script.

2.1.1 Set Path
This command specifies a directory where Impact will look for input files
specified in subsequent commands. The directory name is added to a
list stored in memory. When Impact starts up, the list contains ‘.’
(the current working directory), and a default directory that normally is
‘$SCHRODINGER/impact-v5.5/data’. The set path command adds one di-
rectory to the end of this list. Thus the specified directory will be searched
only for files that cannot be found in the current working directory, the de-
fault directory, or directories specified by previous set path or set ffield
commands. To specify more than one directory, use more than one set path
command, one for each directory in the order you wish them to be searched.

• set path dirname

2.1.2 Set Ffield (or Set Force)

This command specifies the force field that Impact uses to calculate energies
and forces. This has two consequences:

A directory that contains the parameter and residue database relevant
to the specified force field is added to the beginning of the search path,
after only the current working directory. Thus the correct residue and
parameter files will be used instead of the default ones.
A flag is set that indicates which force field is being used. This flag
determines the functional form used in energy and force calculations.
• set ffield ffname

Currently the values that can be used for ffname are OPLS2001,and
OPLS20051 for fixed-charge force fields, as well as OPLS_PFF_2000 and

1 Impact 3.5 had (optimistically) referred to an earlier, incomplete form of this force field
as OPLS2003.

Impact 5.5 Command Reference Manual 15



Chapter 2: Setup System

OPLS_PFF_2005 for Schrödinger’s polarizable force field. OPLS2005 is the
default force field.
OPLS2001 generally uses pre-2000 OPLS force field parameters. OPLS2005 is
a new parameterization which includes optimized parameters for proteins2

and ligands.3

OPLS_PFF_2000 and OPLS_PFF_2005 select Schrödinger’s Polarizable Force
Field (see Section 1.7.2 [PFF (ffield)], page 12), with bonded and torsional
parameters adapted from one of the fixed-charge force fields and atomtyping
schemes OPLS2000 and OPLS2005. In order to use the PFF in a simulation,
it is also necessary to include the pff keyword in the SETMODEL task. See
Section 2.3.3.1 [Mmechanics (setpotential)], page 26.
The PFF module is only available under special license from Schrödinger.

2.1.3 Set Noinvalidate

Maestro files can embed properties, such as energies and structure identifiers,
that implicitly only correspond to the particular structure, connectivity, or
even precise Cartesian coordinates of the atoms. Maestro files can encode
these dependencies in such a way to tell other Schrödinger software when
they are invalid and should be deleted from the structure.4

For example, if an input structure already has a property r_mmod_
Potential_Energy-OPLS-AA, this is an energy that corresponds to the
particular geometry of the molecule. If any of the internal coordinates are
changed, the energy value is no longer valid. Such properties are removed if
and when geometries are modified, and upon output of the structure, they
will not appear.
Sometimes, however, it is desired to retain all the input properties through
a complicated workflow. Perhaps you have minimized a number of ligand
structures with MacroModel, and then dock them with Glide using its in-
ternal conformation generator. Normally, when Glide does its conformation
generation, it invalidates all the input properties known to depend on the
internal coordinates of the structure, including the MacroModel energies. If
you want your output PoseViewer files to keep these properties, even if they
don’t correspond to the coordinates anymore, and also have the Glide pose
properties, which do correspond, then you must add this set noinvalidate
property to your Glide input file.

• set noinvalidate

Caution: This option is a temporary measure. In the future, we intend
to introduce an easy-to-use method in Maestro to tailor each property’s

2 G. A. Kaminski, R. A. Friesner, J. Tirado-Rives and W. L. Jorgensen, J. Phys. Chem. B,
105, 6474–6487 (2001)

3 J. L. Banks et al., J. Comp. Chem., 26, 1752-1780 (2005)
4 These dependencies are denoted by a m_depend block in Maestro files.

16 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

invalidation setting, so you can clear invalid ones while fixing other ones, to
your preference.

2.2 Task Create
The object of this task is to set up, modify and process the internal coordi-
nates of the molecules in the simulated system. Very few things can be done
without first setting up the system, so this task is typically among the first
to be executed. Remember, however, that Impact input files should start
with a line that identifies the name of the log file and a descriptive title.
Thus, the typical Impact input file has the structure

write file logfile title Some title *

set commands if desired
create

Set up the simulation system
quit

setmodel

Set up the model parameters
quit

Perform the calculations
end

2.2.1 Subtask Build

This subtask is used to initialize or modify the connectivity arrays, internal
and cartesian coordinate arrays, residue arrays, and charge arrays for the
molecule(s) specified by the user. The modification may be a conformational
change (i.e., a change in secondary structure), or the insertion of connectivity
information (for crosslinks), or the addition of a user defined residue into a
molecule. ‘Build primary’ must be called before any further calculations to
fill the arrays.

2.2.1.1 Primary type Auto
• build primary type auto name spec -

[mole molname] [check] -

[ gotostruct structnum | nextstruct ] -

read [ maestro | pdb | sd ] file filename -

[tagged tagname] [ cmae ] [ fos | fobo ] -

[ notestff | notest ]

The ‘type auto’ option of the ‘build primary’ command is generally used
to interface Impact to the Maestro graphical front end. An Impact species
of type ‘auto’ contains internally all of the information necessary to produce
a molecular file in Maestro format that can later loaded into the Maestro
graphical front end. If the species is constructed using exclusively files in
Maestro format it is ensured that graphical and other information originally
contained in the input Maestro files is carried over to the Maestro file in
output (see Section 3.1.6 [Read/write (minimize)], page 57). The ‘build
primary type auto’ command also supports input from PDB and SD files;

Impact 5.5 Command Reference Manual 17



Chapter 2: Setup System

in these cases Impact essentially converts these formats to Maestro format
internally.

name Specifies the identifier spec of the species to be created or the
of the existing species to which a new molecule is to be added.

mole Specifies the identifier molname of the molecule to be created.

check Instructs Impact to compare the molecular structures of the
molecules currently loaded in the species with the ones being
loaded. If the two sets are considered chemically identical, ex-
cept perhaps for a conformational difference, the automatic atom
typing of the molecules are not performed even if the build
types (see Section 2.2.1.3 [Types (build)], page 20) is subse-
quently invoked. Otherwise all the molecules present in the
species are deleted and replaced with the molecule being loaded
and the ‘build types’ will preserve its normal behavior.

The check keyword is necessary after the first structure when
reading multiple structures sequentially into the same Impact
species. Without it, the atoms of the new structure are ap-
pended to those already in the species, rather than replacing
them. When reading multiple structures in a while-endwhile
loop (see Section 4.3.1.1 [while (control)], page 144), the first
build primary command must occur before entering the loop,
without the check keyword, whereas the build primary com-
mand inside the loop must be build primary check. Such loops
are standard procedure in the Glide docking module (see Sec-
tion 3.5 [Docking], page 76).

maestro Specifies that the molecular file in input is in Maestro format
(usually denoted by a .mae file extension). The ‘tagged’ option
is used to specify that only the subset of the atoms tagged with
the specified tag tagname are to be loaded. Sets of atoms are
sometimes tagged by the Maestro front end to identify special
structures of the system (such as the ligand in a ligand-receptor
complex, often tagged LIG_) in order to instruct Impact to han-
dle them in special ways (such as loading the ligand in a different
Impact species from the receptor).

tagged An option used with files in Maestro format. See note above.

pdb Specifies that the molecular file in input is in PDB format (usu-
ally denoted by a .pdb file extension).

sd Specifies that the molecular file in input is in MOL format (usually
denoted by a .mol or .sdf file extension).

18 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

gotostruct
nextstruct

Used for multi-structure files, files that contain a sequence of
structures rather than a single structure. ‘gotostruct’ in-
structs to read the structure at the position structnum in the
file. ‘nextstruct’ reads the next available structure in the file
starting from the last accessed position (or the first structure
if the file has been accessed for the first time). The default is
to read the current structure (the first structure or the last ac-
cessed structure). Note that Impact maintains only a record of
the position of the current open file, so that if file1 and then
file2 are accessed in sequence, the position information of file1
is lost.

cmae Read partial charges for all atoms from Maestro files. These
override charges that OPLS-AA would assign.

fos Use formal charges from Maestro or SD files for single atoms.
This allows you to choose specific oxidation states for ions, e.g.,
Fe3+ instead of OPLS-AA’s default for Iron, Fe2+.

fobo Use all formal charges and bond orders from the input Maestro
or SD file, overriding the assignments that the OPLS-AA typer
would make.

notestff The default behavior of build primary auto is to check the
Lewis structure of the species and skip further processing of
structures for which no valid Lewis structure could be gener-
ated. The ‘notestff’ keyword allows processing of the species
regardless of the validity of its Lewis structure. Accepting input
structures that are not correct Lewis structures may be nec-
essary in the QM region of mixed QM/MM calculations (see
Section 2.3.8 [Subtask QMregion], page 44), where the Jaguar
program will determine the correct structure. For additional in-
formation regarding Lewis structure checking see the ‘lewis’ or
‘ifo’ keywords.
CAUTION: we strongly discourage use of the ‘notestff’ key-
word for structures other than those that contain the QM region
of QSite jobs, unless you are sure that the connectivity, bond
orders, and formal charges of your input structure are correct.
Forcing the program to process incorrect structures can lead to
serious errors in results.
The keyword is applied to all species that undergo a build
types command until the next build primary auto command
where the default behavior is reverted to unless another
‘notestff’ command is given.

Impact 5.5 Command Reference Manual 19



Chapter 2: Setup System

2.2.1.2 Solvent
Impact distinguishes between species that are used primarily as solvent and
those that are used as solute. This option should be used in the place of
‘build primary’ to specify the nature of the solvent.5 A typical although
simplified use is given in the following example:

CREATE

build primary name dipep type auto read maestro file "gly2.mae"

build solvent name water type spc nmol 216 h2o

build types name dipep

build types name water

QUIT

If both solvent and solute are present, then Impact will automatically remove
those solvent molecules that overlap the solute. The removal algorithm is
based on safe default settings which however may cause the removal of too
many solvent molecules, giving a total system density that is too low. These
settings can be modified using the mixture subtask of the setmodel task
(see Section 2.3.5 [Mixture (setmodel)], page 38).

• build solvent name spec type [ spc | tips | tip4p ] nmol num h2o

Builds the structural arrays for the solvent species spec. It can handle SPC,
TIP3P and TIP4P water models. The parameter to nmol gives the initial
number of molecules (which might be different from the final value (see
Section 2.3.5 [Mixture (setmodel)], page 38) .

2.2.1.3 Types
• build types name spec [pparam] [lewis int|ifo int] -

[patype int] [plewis int]

Assigns OPLS-AA atom types to species spec.
Most, but not all, of the Impact tasks require the ability to calculate the en-
ergy of the system using a force field. A force field is based on the assignment
of an atom type to each atom. Impact provides a facility to automatically
assign OPLS-AA atom types to a molecular system and to automatically rec-
ognize which bonds, bond angles and torsions are to be included in the
energy calculation. This facility is invoked by the ‘build types’ command.
The automatic atomtyping procedure is time consuming especially for large
molecules. For species built stepwise from individual molecules invoke the
‘build types’ command only when the species is completed rather than
after each build command. For example the sequence of commands

CREATE

build primary type auto name complex mole receptor -

read maestro file receptor.mae

build types name complex

build primary type auto name complex mole ligand -

read maestro file ligand.mae

build types name complex

5 There can be only one solvent species in Impact.

20 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

QUIT

and
CREATE

build primary type auto name complex mole receptor -

read maestro file receptor.mae

build primary type auto name complex mole ligand -

read maestro file ligand.mae

build types name complex

QUIT

will generate identical molecular systems with identical OPLS-AA atom types
assignment, but the latter will execute in less time.
The Lewis structures of all species to be typed are, by default, checked prior
to the assignment of atomtypes and force field parameters. If the species is
found to have a valid Lewis structure, the species is passed to the automatic
atomtyping routine. If the Lewis structure is found to be invalid, the Lewis
structure refinement process is initiated and an attempt is made to generate
a valid Lewis structure. If no valid Lewis structure is generated, further
processing on the species is halted unless the ‘notestff’ flag is employed in
the ‘build primary auto’ command. The behavior of the Lewis structure
checking/refinement process is controlled via the ‘lewis’ or ‘ifo’ arguments
as shown below.
• ‘lewis 1’ - Use formal charges for isolated atoms from the input struc-

ture. Equivalent to setting the ‘fos’ flag for a ‘build primary auto’
command.

• ‘lewis 2’ - Use formal charges and bond orders from the input structure.
No Lewis structure check is performed. Equivalent to setting the ‘fobo’
flag for a ‘build primary auto’ command.

• ‘lewis 5’ - Default behavior. First test if input structure is valid, if not
then attempt to generate a valid Lewis structure.

To print the atom types and force field parameters assigned, add the pparam
flag to the ‘build types’ command. For more verbose printing from the
automatic atomtyping process, use the patype flag with increasing verbiage
in going from values of 1 to 6. For more verbose printing from the Lewis
structure checking/refinement process, use the plewis flag which will output
increasing verbosity in going from values of 1 to 6.

2.3 Task Setmodel
The object of this task is to process energy, structural and simulation pa-
rameters required for the following simulations:
• pure solute;
• pure solvent;
• mixed solute-solvent;
• crystal.

Impact 5.5 Command Reference Manual 21



Chapter 2: Setup System

This task must be completed before calls to minimize, dynamics, or subtasks
of analysis requiring energy evaluations.

2.3.1 Subtask Energy

Read in information needed to calculate force and energy in MM, MD
and MC simulations, including boundary conditions, potential cutoff, con-
straints, and screening of Coulomb interactions. The following options are
allowed in subtask energy.

2.3.1.1 Periodic
Sets up periodic boundary conditions for species spec based on the supplied
bx, by, bz box dimensions, which should be in Å. Instead of specifying a
species by name you can use the keyword all.

• energy periodic [ name spec | all ] [ bx val by val bz val ]

2.3.1.2 Molcutoff/Rescutoff
• energy [ molcutoff | rescutoff ] [ byatom | bycm ] [ all | none | name spec ]

Specifies that a molecular (molcutoff) or residue-based (rescutoff) group
cutoff scheme should be used for species spec. The byatom and bycm options
control the criteria according to which two atom groups (two molecules or
two residues) are considered neighbors. Using byatom mode two atom groups
are considered neighbors if any two atoms belonging to different groups are
closer than the cutoff distance. Using bycm mode two atom groups are
considered neighbors if the corresponding centers of mass are closer than the
cutoff distance. If byatom is specified for species spec1 and bycm is specified
for spec2 then an atom group of spec1 is considered neighbor of an atom
group of spec2 if the distance between any atom of the first atom group and
the center of mass of the second group is smaller than the cutoff distance.
The default is byatom for the residue-based cutoff scheme (rescutoff) and
bycm for the molecule-based cutoff scheme (molcutoff). The all option can
be used to apply to all species the specified group cutoff scheme. If instead
none is given, an atom-based cutoff scheme is applied to all species. If a
group cutoff scheme is not specified for a species then an atom-based cutoff
scheme is assumed.
The term group cutoff implies that, if two atom groups (molecules or
residues) are considered neighbors, every atom in the first group are con-
sidered neighbors to every atom in the other group regardless of their inter-
atomic distance. (In the non-bonded energy calculation the actual distance
between each pair of neighboring atoms is used.) For simulations involv-
ing water, for example, molecular cutoffs should always be used in order to
avoid splitting dipoles in the electrostatic energy calculation. With respect
to molecular-based cutoffs a molecule is defined as a covalently linked set
of atoms. A residue can not span more than one molecule so, for example,
each water molecule is a separate residue. For proteins a residue-based cut-

22 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

off scheme should be preferred over an atom-based cutoff scheme. In the
OPLS force field each residue has a zero or integral total charge (a charge
group) therefore a residue-based cutoff scheme avoids some of the major
dipole splitting problems inherent in an atom-based cutoff scheme.

2.3.1.3 Constraints
Instruct Impact to read in bonds or distances that should be constrained
during molecular dynamics using the SHAKE method. There are two ways of
specifying constraints:

• energy constraints read file fname

will read the constraints from the given file (see below for a description of
the format of the constraint file). Alternatively,

• energy constraints (bonds [ water ] | lonepairs )

constrains all bonds to their equilibrium values based on the bond parameters
read in by setmodel read. Therefore, parameters must be read first for
this option to work. Note that all species will be thus constrained. If the
optional keyword water is present only the bond lengths of water molecules
are constrained. The keyword lonepairs is a little more complicated. It
finds all atoms whose names have the first two letters LP and adds the bonds
and angles associated with them to the SHAKE constraints. Lone pairs move
too much due to their low atomic weight and therefore this option should
be used when the force field is AMBER86 and cysteines and methionines,
which contain LP’s on the sulfur, are present. The added constraints only
apply to bonds made directly to the LP’s (such as SG–LP) and the angles
involving two LP’s (such as LP–SG–LP). The command

• energy constraints angles water

constrains the H–H distance of water molecules to the value obtained from
the equilibrium bond length and angle. The commands

energy constraints bonds water

energy constraints angles water

allow to perform MD simulations with rigid water models (SPC, TIP4P, and
TIP3P) without constraining the other molecules in the system, without
having to explicitly define a constraints file (see above) or in cases when a
constraints file can not be used, such as when water molecules are part of a
type auto species (see see Section 2.2.1.1 [Auto (primary type)], page 17).
The commands

energy constraints bonds

energy constraints angles water

rigidify water molecules and constrain the bond lengths of all the other
molecules in the system.
The maximum allowed number of iterations in the SHAKE/RATTLE algorithms
can be controlled with the keyword maxiter (default: 1000)

• energy constraints maxiter num

2.3.1.4 Constraint file format

Impact 5.5 Command Reference Manual 23



Chapter 2: Setup System

1. The file that contains the constrained distances is free format but the
following lines are read in:
• Number of constraints for a species.
• Pairs of atoms constrained and constrained distance value.

Caution: it is expected that constraints for all species are in one
file and these are added to the list for the species, e.g.,

energy constraints bond

can be used first followed by
energy constraints read file fname

where fname contains only the list of distances needed to constrain
angles.

2. Sample constraint files
• for H2O constraining OH distances to 1.0 Å and HH distance to

1.633 Å:
3

1 2 1.0

1 3 1.633

2 3 1.0

• If species 1 is unconstrained and species 2 is constrained water:
0

3

1 2 1.0

1 3 1.633

2 3 1.0

Caution: If the option ‘energy constraints bond’ is chosen and a con-
straint file is not read, all bonds in the molecule are constrained to their
equilibrium values. This is done using the SHAKE algorithm.

(energy), Energy (setmodel)

2.3.1.5 Torsional Restraints

The following commands are useful to restrain torsional dihedral angles of
the system near the current values or supplied values. These restraints are
implemented as flat-bottom harmonic penalty potentials:

U(φ) =
k

2
[φ− (φ0 + ∆)]2 if φ > φ0 + ∆

U(φ) =
k

2
[φ− (φ0 −∆)]2 if φ < φ0 −∆

and 0 otherwise, where φ is the dihedral angle, φ0 is the reference angle, ∆
is the half-width of the flat-bottom region, and k is the force constant.
The command

24 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

• energy restrain torsions all forcec value [range value]

restrains all dihedral angles associated with a torsional potential energy term.
The value of forcec is the force constant in kcal/mol/degrees2 , the range
parameter sets the half-width of the flat-bottom harmonic potentials in de-
grees. The range parameter can be omitted in which case it is set to zero
(pure harmonic restraint).
To restrain specific dihedrals for a particular species use the command:

• energy restrain torsions name name read file file

The parameters of the restraining potential are read the specified file. Each
line in this file represents a dihedral angle to be restrained. The format of
each line is:

forcec phi0 i j k l range

where forcec and range have the same meaning as above, phi0 is the center
of restraining potential, and i, j, k, and l, are the internal atom indexes
of the atoms specifying the dihedral angle. Both types of commands can
be given, in which case the restrains specified by the second command are
added to the ones created by the first.
Torsional restrain parameters are reported in the output file with a verbose
level of 3 or higher (see Section 1.5 [Input Files], page 5). The energy penalty
of each individual restrained dihedral is reported in the output file at the
end of a minimization task.

2.3.1.6 Parm
Read in parameters such as nonbonded cutoffs and nonbonded list update
frequency, which are used by several energy manipulation tasks such as
dynamics, minimize, montecarlo, tormap, and potfield.

• energy parm cutoff value

Sets a given cutoff distance to the length specified in value, which should be
in Å. The keyword cutoff selects the nonbonded cutoff, which is used for
both the Lennard-Jones and the electrostatic interactions (unless the Fast
Multipole Method is used). This is a sharp cutoff which is meant to be used
with either implicit solvation or with long range electrostatic treatments
such as Ewald. The specification of a non-bonded cutoff value is necessary
for systems, such as those with periodic boundary conditions, that require a
non-bonded neighbor list. Conversely, the absence of the parm cutoff option
in the input file turns off the use of non-bonded neighbor lists entirely; all
non-bonded interactions are computed (excluded interactions such as 1,2
interactions are honored).

• energy parm scr14 value

Sets the 1–4 nonbonded screening constant (2.0 by default).
• energy parm [ dielectric value [ distance | nodistance ] ]

Sets the value of the dielectric constant (1.0 by default). These options allow
the choice of a distance-dependent or a constant dielectric function. One of
these must be specified or the program will stop.

Impact 5.5 Command Reference Manual 25



Chapter 2: Setup System

• energy parm listupdate num

Sets the number of steps between updates to the nonbonded (Verlet) list. If
listupdate is not specified, it defaults to 10.

• energy parm outcutoff value outlistupdate num

Sets the cutoff radius and number of steps between updates for the outer
neighbor list. When these optional parameters are specified an outer neigh-
bor list is used. When the main non-bonded neighbor list is updated only
the outer neighbor list is scanned rather than the entire system. If the outer
neighbor list is updated more infrequently than the non-bonded neighbor
list, using the outer neighbor list leads to a significant reduction of the time
required to update the non-bonded neighbor list, particularly for large sys-
tems (>4,000 atoms).

• energy parm hmass value

Sets the mass of hydrogen atoms (in atomic mass units). Increasing the
mass of hydrogen atoms from their physical value (1.008 amu) can be use-
ful for improving the stability of the MD integrator and for possibly using
longer MD time-steps. A value of 5 amu has been generally found to yield
good results. Note that changing the mass of the system changes its kinetic
properties. In classical mechanics however thermodynamic quantities are, in
principle, strictly independent of the atomic masses.

• energy parm print num

Sets the frequencies at which the energy terms are printed to the output.

2.3.2 Subtask Read

This command is used to read in energy parameters from a separate file or
from the main input file.

2.3.3 Subtask Setpotential

Read in information about the chosen potential function. Each option at
the outermost level (as mmechanics) should be on its own line.

2.3.3.1 Mmechanics

Sets up a standard molecular mechanics potential function taking the fol-
lowing options.

• mmechanics [ all | name spec | nil ] -

[ force | noforce | nil ] [ noecons ] -

[tail | notail | nil ] [ nobond ] [ noangle ] [ notors ] [ no14 ] -

[ nohb ] [ novdw ] [ ewald [ kmax km ] [ alpha alfa ] ] -

[ fmm level level maxpole poles [ smoothing ] ]

[ consolv [ pbf | sgb | agbnp | nil ] consolv_options ]

all Use of all flags that the options nobond, noangle and notors
refer to all species, otherwise use species spec.

26 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

force
noforce Force/noforce determine whether forces should be calculated.

Forces are required for minimization and dynamics. (This is
the default.) Currently this option is ignored if the Fast Multi-
pole Method is used.

noecons Determines whether NOE (Nuclear Overhauser Effect) con-
straints will be added to the potential (the default is no NOE
constraints).

tail
notail Determines whether long-range corrections to the van der Waals

energies due to cutoffs are made. Tail is needed for constant
pressure simulations (the default is notail).

nobond Flag to turn off bond stretching term.

noangle Flag to turn off valence angle bending term.

notors Flag to turn off torsional twisting term.

no14 Flag to turn off both 1-4 interaction term (nonb14 and noel14).

noel Flag to turn off electrostatic term.

nohb Flag to turn off hydrogen bond term.

novdw Flag to turn off van der Waals (non-bonded) interaction term.

ewald Makes Impact use the Ewald summation method to handle the
long-range electrostatic interactions. It only works if all species
have periodic boundary conditions. To describe the parameters
following the keywords kmax and alpha it is convenient to recall
the definition of the Ewald potential (with ‘conducting boundary
conditions’):

Φ(x) =
∑
n

erfc(α‖x + Ln‖)
‖x + Ln‖

+
∑
k6=0

4π
L3‖k‖2 exp

(
−‖k‖

2

4α2 + ik · x
)

− π

L3α2 .

This formula represents a solution to the Poisson equation for
a unit charge under periodic boundary conditions (there is a
negative background that renders the system neutral, as other-
wise it can be shown that there is no solution) as a sum of two
infinite series, both of which converge exponentially. The first,
so-called ‘real-space sum’, converges faster the larger the value
of α is. Conversely, the second sum converges faster the smaller
this value. Impact restricts the first sum to the original copy,
that is, it only considers the terms with n = 0. The second

Impact 5.5 Command Reference Manual 27



Chapter 2: Setup System

sum, the ‘reciprocal-space sum’, is restricted to those values of
k whose components are, in magnitude, less than or equal to the
parameter specified by the keyword kmax (default: 5). The α
parameter has by default the value 5.5/L, where L is the lin-
ear dimension of the box (which must be cubic). The user can
change this value, however, with the alpha keyword. Note, how-
ever, that changing this parameter might require changing the
maximum number of reciprocal-space vectors also. A good refer-
ence for the Ewald summation method is the book by Allen and
Tildesley, Computer Simulation of Liquids, Oxford University
Press, 1991. For the mathematically inclined we recommend
also the article: de Leeuw, Perram and Smith, Simulation of
electrostatic systems in periodic boundary conditions. I. Lattice
sums and dielectric constants, Proc. R. Soc. London, A373,
27–56 (1980).

fmm Selects the Fast Multipole Method (FMM) for the calculation
of the electrostatic interactions. The number following level
should be the desired number of levels in the hierarchical tree.
Since the nodes of the tree correspond to subsequent subdivi-
sions of the simulation box into halves along each direction, if
level l is selected, the number of boxes at the lowest level will
be 8l and the linear dimension of each one box at that level will
be L/2l with L being the linear dimension of the simulation box
(which must be cubic).
The number following maxpole is the maximum number of mul-
tipole moments that will be used to approximate the potential
and field produced by ‘far’ clusters. Currently a minimum of four
(4) and a maximum of twenty (20) multipoles are allowed. The
keyword smoothing determines whether a sharp or smooth cut-
off are used to separate the direct forces into near and far com-
ponents. It is only relevant when using the Reversible RESPA
integrators (see Section 3.2.2 [Dynamics Subtask Run], page 62)
with more than two stages. If periodic boundary conditions are
in effect, the potential that gets computed coincides with the
Ewald potential (see above), but the algorithm is completely
different. One important restriction when using the FMM with
periodic boundary conditions is that the system must be electri-
cally neutral, i.e., the sum of all point charges must be zero. The
main reference for the FMM is Greengard’s thesis, The Rapid
Evaluation of Potential Fields in Particle Systems, The MIT
Press, Cambridge, 1988.
Because FMM calculations scale linearly with the total num-
ber of atoms, they can provide a significant speed advantage in
calculating electrostatic interactions for large systems when it

28 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

is not desirable to use cutoffs. Systems large enough for FMM
to be advantageous may be large macromolecules or complexes
of them, or smaller molecules with a large number of explicit
solvent molecules. If it is possible to impose periodic bound-
ary conditions, then the Ewald method (which requires such
boundary conditions) tends to be faster than FMM for systems
containing more than about 20000 atoms.
PLEASE NOTE: The Fast Multipole Method cannot currently
be used with the truncated Newton minimization algorithm
(tnewton) (see Section 3.1.3 [Subtask Tnewton], page 56), or
with SGB continuum solvation (see below). It is available with
PBF continuum solvation (see below), but the FMM is not ap-
plied to the continuum solvent itself. Unless the solute is quite
large, therefore, it may not be advantageous to use FMM with
continuum solvent.

consolv [sgb]
• mmechanics consolv sgb [ cutoff val ] -

[ npsolv ] [ debug val ]

SGB, the default option for consolv is a surface area based ver-
sion of the Generalized Born model, which can be proved to be
a well-defined approximation to the boundary element formula-
tion of the Poisson-Boltzmann (PB) equation6. The relationship
of the surface area methodology to the volume-integration based
approach of the original GB model7 can be found in Ghosh et
al.’s paper. With empirical corrections, SGB produces signifi-
cant improvements in accuracy, as compared to the uncorrected
GB model.
PLEASE NOTE: This solvation method cannot currently be
used with the Fast Multipole Method FMM (see above).

cutoff The cutoff parameter specifies how far any atom
must move from the coordinates used in the previous
calculation before a new Reaction Field calculation
is performed. The default value is 0.1 Å. If all atomic
coordinates have moved less than this cutoff, then
the previous calculated energy and forces are used
for that step in the minimization. A relatively large
value of cutoff can significantly reduce the required
computational time at the expense of some loss in
accuracy.

npsolv The npsolv keyword will turn on the properly
parametrized dielectric radii and nonpolar param-

6 A. Ghosh, C. S. Rapp, and R. A. Friesner, J. Phys. Chem. B, 102, 10983, (1998)
7 Still, et al. J. Am. Chem. Soc., 112, 6127, 1990

Impact 5.5 Command Reference Manual 29



Chapter 2: Setup System

eters for SGB continuum solvent simulations. The
parametrization was done by fitting the SGB cal-
culated free energy coupled with a novel nonpolar
function8 against small molecule experimental sol-
vation free energies.

debug Setting debug to a nonzero value causes diagnostic
messages and files to be printed for each calculation.

The consolv sgb parameter files are in the directories
$SCHRODINGER/impact-v5.5/data/opls

$SCHRODINGER/impact-v5.5/data/opls2000

and all start with sgb. The files should not need to be modified
by the user on an ongoing basis; most useful parameters can be
changed via the sgbp input file keyword (see Section 2.3.4 [Sgbp
(setmodel)], page 37).
If the SGB model is activated, then the following line should
appear in the output:

%IMPACT-I (mmstd): Using Surface Generalized Born Model

In the energy-decomposition printout provided by Impact dur-
ing the course of a minimization, the continuum-solvent energy
is provided under the heading ‘RxnFld(Sgb)’. These energies
include the interactions between the atomic-point charges and
the induced charges at the solute/solvent interface.
Examples:

• mmechanics consolv sgb cutoff 0.1

• mmechanics consolv sgb nonpolar 1

consolv pbf
• mmechanics consolv pbf [ pbfevery val ] [ cutoff val ] -

[ rxnf_cutoff val ] [ cavity_cutoff val ] -

[ low_res | med_res | high_res ] [ debug val ]

PBF is a Poisson-Boltzmann Solver. It takes as input a set of
atomic coordinates, their charges and radii, a solvent radius,
and dielectric constants for the solute and solvent and computes
the electrostatic potential from the resulting Poisson-Boltzmann
equation. The reaction-field energy (electrostatic interaction of
the fixed atomic charges with the induced surface charges at the
solute/solvent interface) and gradient are then calculated. The
reaction-field terms effectively represent the average interaction
between the solute molecule(s) and the solvent. The advantage
of this approach is that the large number of solvent molecules
typically used in a solution-phase molecular simulation or min-
imization are not required, thereby dramatically reducing the

8 E. Gallicchio, L. Y. Zhang, and R. M. Levy, J. Comput. Chem, 23, 517-529 (2002)

30 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

computational expense. While treating the solvent as a contin-
uum rather than a collection of discrete molecules is clearly an
approximation, it has been shown to be a fairly good one for
many types of calculations.
The novel feature of PBF over other algorithms used to solve
the Poisson-Boltzmann equation is the use of a finite-element
mesh with tetrahedron grids. This approach allows the density
of grid points used in solving the discretized equations to be
optimized such that accurate results may be achieved with a
minimal number of grid points and hence with minimal compu-
tational effort. For example, a high density of points is required
at the solute/solvent interface to compute a accurate and numer-
ically stable reaction-field gradient. Other approaches using, for
instance, a finite-difference method with cubic grids do not have
this flexibility and must use a large number of points to obtain
comparable accuracy. The use of a finite-element mesh also al-
lows a high density of points to be used in a particular region of
interest, e.g., a enzyme-binding site and a lower density of grid
points elsewhere in the system, again minimizing the computa-
tional effort.

pbfevery This parameter sets the frequency in timesteps
when a PBF calculation is performed. In between
timesteps use the most recent PBF energies and
forces.

cutoff The cutoff parameter specifies how far any atom
must move from the coordinates used in the previ-
ous calculation before a new Reaction Field calcula-
tion is performed. The default value is 0.1 Å. If all
atomic coordinates have moved less than this cutoff,
then the previous calculated energy and forces are
used for that step in the minimization. Preliminary
results suggest that the pbf energy and gradient are
slowly varying functions of the atomic coordinates,
relative to the other energies and forces involved in
a typical molecular mechanics calculation. A rela-
tively large value of cutoff can significantly reduce
the required computational time at the expense of
some loss in accuracy.

cavity_cutoff
The keyword cavity_cutoff is used for cavity term
recalculation. It is similar to the keyword cutoff.

low_res Use the low grid point resolution setting. This is
the default.

Impact 5.5 Command Reference Manual 31



Chapter 2: Setup System

med_res Use a medium grid point resolution setting.

high_res Use a high grid point resolution setting. This is the
most expensive setting, but also the most accurate.

debug Setting debug to a nonzero value causes diagnostic
messages and files to be printed for each calculation.

The consolv pbf parameter files are in the directories
$SCHRODINGER/impact-v5.5/data/opls

$SCHRODINGER/impact-v5.5/data/opls2000

and all start with pbf. The files should not need to be modified
by the user on an ongoing basis. A few parameters, however,
may need to be changed occasionally. For example, the dielectric
constants used for the solutes and solvent can be changed in the
‘pbf.com’ file. Also the solvent radius can changed by editing
the same file.
If the PBF model is activated, then the following line should
appear in the output:

%IMPACT-I (mmstd): Using Poisson-Boltzmann Model

In the energy-decomposition printout provided by Impact dur-
ing the course of a minimization, the continuum-solvent energy
is provided under the heading ‘RxnFld(Pbf)’. These energies
include the interactions between the atomic-point charges and
the induced charges at the solute/solvent interface.
Because of the large memory requirements for medium-sized and
larger proteins, PBF currently writes some arrays to disk and
then reads them back in as needed. Currently only one file is
being written to disk, ‘zzZ_Ctbl_Pbf_Zzz’. Every effort is made
to remove this file after a calculation has completed. However,
if a calculation is aborted or something goes amiss, this file may
be left on the disk.
Examples:

• mmechanics consolv pbf cutoff 0.1

• mmechanics consolv pbf low_res cutoff 0.1 cavity_cutoff 0.9

consolv agbnp
• mmechanics consolv agbnp

AGBNP is an analytical implicit solvent model based on the
pairwise descreening (PD) Generalized Born (GB) model and
a non-polar solvation free energy (NP) estimator which takes
into account independently the work of cavity formation and the
solute-solvent van der Waals interaction energy. The model and
its derivation are described in detail in the following paper: E.
Gallicchio, R. M. Levy, AGBNP: An Analytic Implicit Solvent
Model Suitable for Molecular Dynamics Simulations and High-
Resolution Modeling, J. Comput. Chem., 25, 479-499 (2004).

32 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

AGBNP is unique among pairwise descreening GB models in
that the overlap scaling coefficients depend on solute conforma-
tion and are computed from purely geometric considerations,
rather than being fit to experimental and Poisson Boltzmann
data. Hydrogen atoms do not contribute to descreening. The
non-polar hydration free energy estimator is composed of two
terms. The first, related to the cavity hydration free energy,
is proportional to the solute surface area of each atom through
surface tension parameters that depend on atom type. The sur-
face area is defined as the van der Waals surface area obtained
by increasing the van der Waals radius of each atom by 0.5 Å.
The surface area of each atom is calculated using an analytical
algorithm based on the same method used to calculate overlap
scaling factors. Hydrogen atoms do not contribute to the solute
surface area, that is they can be thought as of atoms of zero
radius in this respect. The second component of the non-polar
hydration free energy model is a solute-solvent van der Waals
interaction energy estimator that depends on the Born radius
and Lennard-Jones parameters of each atom. This estimator
includes dimensionless scaling parameters for each atom type
adjusted to better reproduce solute-solvent van der Waals en-
ergies obtained from explicit solvent simulations. In addition
to the surface tension parameters and van der Waals scaling
parameters, the other parameters of the model, atomic partial
charges and van der Waals radii, are derived from the under-
lying force field without change (partial charges) or with small
modifications (van der Waals radii).

The current AGBNP parameters are stored in a file called
agbnp.param in the directories

$SCHRODINGER/impact-v5.5/data/opls

$SCHRODINGER/impact-v5.5/data/opls2000

$SCHRODINGER/impact-v5.5/data/opls2001

$SCHRODINGER/impact-v5.5/data/opls2005

depending on the active force field version. The format of the
agbnp.param file is as follows:

Impact 5.5 Command Reference Manual 33



Chapter 2: Setup System

Column Content
1 Type index
2 OPLS symbolic type
3 van der Waals radius [Å]
4 non-polar gamma parameter [(kcal/mol)/Å2]
5 non-polar alpha parameter [dimensionless]
6 non-polar delta parameter [kcal/mol]
7 correction gamma parameter [(kcal/mol)/Å2]
8 correction alpha parameter [dimensionless]
9 correction delta parameter [kcal/mol]
10 screening parameter [dimensionless]

Lines that begin with ’#’ are comments. Lines beginning with
dielectric_in and dielectric_out set the dielectric solvent
of the solute and the solvent, respectively, and should precede
any other non-comment line. gamma above refers to the surface
tension parameters, alpha to the solute-solvent van der Waals
scaling parameters, the values of the delta parameters should
be left to their default values (zero). The values of the non-
polar parameters used internally are the sum of the pure and
correction values. However the non-polar energy derived from
each is reported separately as a pure non-polar energy and a cor-
rection energy term. The correction energy term has the same
expression as the non-polar estimator (this could change in the
future) but it is calculated using the set of correction parame-
ters rather than the pure non-polar parameters. The screening
parameter in column 10, normally set to 1 for all atom types, is
described in the following paper: A. K. Felts, Y. Harano, E. Gal-
licchio, and R. M. Levy. Free energy surfaces of beta-hairpin and
alpha-helical peptides generated by replica exchange molecular
dynamics with the AGBNP implicit solvent model. PROTEINS:
Structure, Function, and Bioinformatics, 56, 310-321 (2004). To
modify the AGBNP parameters edit a copy of the agbnp.param
file in the working directory. The agbnp.param file in the work-
ing directory takes precedence over the agbnp.param file in the
data directory.
If the AGBNP model is activated the following line should ap-
pear in the output:

%IMPACT-I: Using AGBNP: Analytical Generalized Born Model + Analytic

Non-Polar Hydration Model

The running AGBNP energy components are reported under the
labels RxnFld(AGBNP) and NPolar(AGBNP) in the output file, for
the electrostatic and non-polar components (pure plus correc-
tion) respectively. The energy summary at the end of the out-
put file lists the total AGBNP solvation free energy under AGBNP
Solvation Energy, the electrostatic component of the solva-
tion free energy under AGBNP Solvation Energy (polar), the

34 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

pure non-polar component under AGBNP Solv. Energy (non-
polar), and the correction term under AGBNP Solv. Energy
(correction).
There are no options associated with the consolv agbnp set-
ting. AGBNP applies the same distance cutoff as specified by
the energy parm cutoff command (see Section 2.3.1.6 [Parm
(energy)], page 25) for the GB pair energies and for the pairwise
descreening calculation of Born radii.

2.3.3.2 Mmechanics Pff

Set up a polarizable force field potential function. Only a few of the options
described in Section 2.3.3.1 [Mmechanics (setpotential)], page 26 are appro-
priate for use with PFF. For more information on the theory, see Section 1.7.2
[PFF (ffield)], page 12. In order to use the PFF, you must also specify SET
FFIELD OPLS_PFF_2000 or OPLS_PFF_2005 (see Section 2.1.2 [Ffield (set)],
page 15).
The PFF module is only available under special license from Schrödinger.

• mmechanics pff [ consolv pbf npsolv ]

PFF calculations should always use a large enough cutoff to encompass the
entire system.

consolv pbf npsolv
Use the parameterized PBF continuum solvent model with the
polarizable force field potential function. The PBF and non-
polar models are in Section 2.3.3.1 [Mmechanics (setpotential)],
page 26, but the nonpolar parameterization used here is opti-
mized for PFF.
Caution: The keywords pbf and npsolv should always be used
with pff consolv as their parameterizations are coupled.

The corresponding parameter file to be read in must be ‘parampff.dat’ in
the read parm subtask, such as in the following example:

SETMODEL

setpotential

mmechanics pff consolv pbf npsolv

quit

read parm file parampff.dat noprint

energy parm cutoff 100.0 listupdate 10 diel 1.0 nodist

QUIT

2.3.3.3 Weight

Change the weights of terms in the potential function. Unless otherwise
indicated below, the weights are all initialized to 1.0 when mmechanics is
used.

Impact 5.5 Command Reference Manual 35



Chapter 2: Setup System

Caution: Despite the terminology below, intramolecular nonbond terms are
affected both by intramolecular and intermolecular electrostatic and LJ
weights. The total nonbond weight is the product of the intramolecular
(within one species) and intermolecular (between species) weights.

• weight intramolecular name spec -

[ bond | angle | torsion | el14 | lj14 | elin | ljin | hbin ] weight

The intramolecular keyword is used to change the weights of intramolecu-
lar terms (those within a single species). The elin, ljin, and hbin keywords
change the weights for all included nonbond pairs within the molecule; el14
and lj14 change them only for “1-4” pairs, i.e., atoms at the outer ends of a
quartet that defines a torsion angle. hbin is only used with the AMBER86
force field.

• weight intermolecular -

[ vdw | eel | hbond | hbelectrostatics ] weight

The intermolecular keyword is used to change the weights of intermolecu-
lar terms within or between species, thus there is no name spec designation.
hbond and hbelectrostatics are only used with the AMBER86 force field.

• weight constraints name spec -

[ noe | torsion | hbond ] weight

• weight constraints name spec buffer weight -

[ halfwidth sigma ]

The constraints keyword defines the weights of various restraint force con-
stants terms. The noe, torsion, and hbond terms are zero by default and
define NOE distance and torsion restraint weights.
The buffer constraint energy is a harmonic term is applied to all “buffered”
atoms specified via zonecons commands. See Section 2.3.7 [Zonecons (set-
model)], page 40. The default buffer is 25 kcal/(Å2 mol). You can control
the sigma halfwidth value via the halfwidth keyword, whose default is 0.0,
equivalent to a harmonic constraint.
Caution: buffer is not a per-species parameter, but is applied to all buffered
atoms in the system.

2.3.3.4 Constraints
Read in distance and torsional constraint lists from a file or the main input
file.

• constraints name spec noec distance -

con1 num con2 num -

[ file fname ]

• constraints name spec noec torsion -

nsec num_sections -

( fres num lres num tpsi value -

tphi value range value ) repeated num sections times

distance signals that distance constraints will be read in.

torsion signals that torsion constraints will be read in.

36 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

file name of constraint file (if different from main input file). This
file has the following 6 or 7 fields—in order but free format: (the
individual NOE weight is optional see Notes below)
resn atna resn atna lower bound upper bound noe weight

con1 number of H-H distance constraints, type 1, to read in.

con2 number of distance constraints between heavy atoms, type 2, to
read in.

If prochiral assignments can be made and you know the
constraint is between HB1-HG2 then the atoms names
should be specified as such and no averaging over equiv-
alent hydrogens will be implemented.
If prochiral assignments can not be made (or in the case
of equivalent H atoms on methyl groups) you need to spec-
ify only the character part of the atom name. In this case
averaging over equivalent hydrogens is automatically imple-
mented, ie., for a methylene proton-methyl group interac-
tion.
1. HB1-HG will result in no averaging on the methylene

but the methyl group will be averaged
2. HB-HG will result in averaging over the protons in the

methylene group and the protons in the methyl group.

Number of sections of torsions to be constrained.

tphi Target value for φ angles (for constraining protein
secondary structure).

tpsi Target value for ψ values (for constraining protein
secondary structure).

range Allowed range (i.e., constraint will be tphi ± rang).

ncon Number of constraints to be read explicitly.
These keywords are read in free format nsec times 4(res. no., atom name)
target value, range. Caution: The weight for the individual NOE constraint
is multiplied by the weight for the entire NOE term. It is one by default and
can be set to any arbitrary value except zero.

2.3.4 Subtask Sgbp

This keyword sets various SGB continuum solvent simulation parameters.
It has no effect unless mmechanics consolv sgb is used in a preceding
setpotential subtask to activate the SGB method.

• sgbp grid_size max dock_grid_size glide_max -

min_grid_size min printe [0|1] printf [0|1] -

active_reg_incr val buffer_reg_size val accuracy val -

epsout val hydrogen_radius val

Impact 5.5 Command Reference Manual 37



Chapter 2: Setup System

grid_size
The maximum number of grid points each atom can have. The
default value is 70.

dock_grid_size
In a Glide calculation, the maximum number of grid points each
atom can have, the default is 30.

min_grid_size
The minimum number of grid points each atom can have. The
default value is 20.

printe If set to 1, print the SGB energy. The default is 0.

printf If set to 1, print the SGB forces. The default is 0.

active_reg_incr
When setting up the active region region, this amount is added
to it. The default is 0.

buffer_reg_size
This defines the buffer region size; the buffer region is located
between the active region and the frozen region.

accuracy The threshhold value used with the singlelong multiple time
scale scheme, and is related to the number of surface grid points
used. The default value is 0.00001. Smaller values result in
denser grids.

epsout The exterior (solvent) dielectric constant. The default is 80.0,
a value typical of water simulations. (The interior dielectric
constant is set by enrg parm diel, see Section 2.3.1.6 [Parm
(energy)], page 25.)

hydrogen_radius
The atomic radius of hydrogen, used in generating the surface.
The default value is 1.0.

2.3.5 Subtask Mixture
• mixture [ density val | keep num ] [ overlap val]

This command sets optional parameters for the removal of excess solvent
molecules when solvent and solute are mixed. If mixture is not present then
the default is to remove all solvent molecules that overlap (as defined below)
with any solute atom. When the mixture command is issued only up to a
maximum of N solvent molecules are removed. N is calculated in one of
two ways. Either from the effective solute volume (which can be controlled
using the density parameter) or from the number of solvent molecules not
to be removed (the keep parameter). A molecule is considered for removal
if the ratio of the distance d and the sum R1+R2 of the van der Waals radii

38 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

of any atom of the solvent molecule and any atom of the solute is smaller
than a overlap threshold value (the overlap parameter). If the minimum
distance d is larger than 10 Å a solvent molecule is not considered for removal
regardless of the value of the overlap threshold value. If more than N solvent
molecules are flagged for removal only the N solvent molecules with the
smallest minimum distance d are removed. If instead the number of solvent
molecules flagged for removal is less than N all flagged solvent molecules are
removed.

density Keyword density is used to set the solute density. The default is
1 g/cm3. The volume of solvent removed is equal to the effective
volume of the solute. The effective solute volume is calculated
from the solute mass and the solute density. The larger the
solute density the smaller the effective solute volume and thus
the smaller the maximum number N of solvent molecules to be
removed.

keep Keyword keep is used to set explicitly the minimum number of
solvent molecules remaining after removal. The default is 0. The
maximum number N of solvent molecules to be removed is set
as the current number of solvent molecules minus the number
of solvent molecules to keep. The keep option preempts the
density option if both are given.

overlap The overlap option is used to set the overlap threshold value
below which a solvent atom is considered to overlap with a solute
atom. The default is 1. Decreasing the overlap parameter makes
it less likely for two atoms to overlap.

2.3.6 Subtask Solute

This subtask is used to place solute molecules at certain positions in the
container “box” of solvent used for the simulations.

2.3.6.1 Translate
The keyword translate brings the center of mass (COM) of the system of
solute molecules to the origin (center of the box), and also finds the longest
distance between atoms along the principal axis, which determines the box
edge lengths. The option skip says to ignore the last num residues of the
solute when performing the operation. With rotate, the solute is rotated
so that the principal moments of inertia coincide with the x, y, z axis. The
longest axis of the molecule is oriented along the z axis. Skip has the above
meaning. If rotate diagonal is given on the command line the rotation
is such that the principal moment of inertia lies along the diagonal of the
simulation box (which must be cubic for this option to work).

• solute translate [ rotate [ diagonal ] ] name spec [ skip num ]

Caution: skip num excludes residues that may not have meaningful coor-
dinates yet (such as counterions) from the translation/rotation operation.

Impact 5.5 Command Reference Manual 39



Chapter 2: Setup System

This parameter may be read in for as many different species as necessary.
The value given for skip means that the last num residues of the species are
ignored in the translation/rotation of the solute.

2.3.7 Subtask Zonecons
This subtask is used to constrain (freeze) or restrain (buffer) various regions
of a molecule based on options specified by the user.

• zonecons [ auto | [ [freeze|genbuffer] | chain | resseq | -

residue | atom | sphere ] name spec sub-options ]

There are seven types of zonecons subtasks described below. All but
zonecons auto are additive, so you can use combinations of them. By de-
fault, all atoms are free to move, as if there are no zonecons subtasks at
all.
Any buffered atoms are restrained using an harmonic potential centered on
the original atom position. Any atom position can be restrained this way.
A buffer zone is often used to to define an intermediate zone between a fixed
region where the atom positions are frozen and the free region where the
atom positions are not restrained. The buffer option is also often used to
perform constrained minimizations. The force constant of the restraining
harmonic potential is user selectable, see Section 2.3.3.3 [Weight (setpoten-
tial)], page 35.

2.3.7.1 Auto
Use the frozen/buffered settings from an input Maestro file.

• zonecons auto

Maestro files written by Maestro specifically for Glide, Liaison, or QSite jobs,
or written as output from a Glide, Liaison, or QSite job, will contain an extra
parameter (internally named i_i_constraint) for each atom. Zonecons
auto uses this parameter in lieu of any other zonecons option, where the
values 0, 1, and 2 correspond to free, frozen, and buffered, respectively.

2.3.7.2 Freeze/Genbuffer

Freeze or restrain (buffer) a specified group of atoms, e.g., all heavy atoms,
all C atoms, all N atoms, all O atoms, or all atoms.

• zonecons [freeze|genbuffer] name spec [all | allC | allN | allO | allheavy]

This is the general freezing or restraining option, it can be used to
freeze/restrain all atoms, all carbon atoms, all nitrogen atoms, all oxy-
gen atoms, or all heavy atoms. The general restraining option is called
genbuffer to differentiate it from the buffer designation available in some
of the other zonecons options.

2.3.7.3 Chain
Chain-based scheme, select any chain in a protein to be in fixed, free, or
buffer region

40 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

• zonecons chain name spec [chainname name [fixed|free|buffer] ]+

This is the chain option, which is used to classify the whole chain with name
to be in fixed, free, or buffer regions.

2.3.7.4 Resseq
Residue sequence-based scheme, such as from residue number 20 to 50, to
be in fixed, free, or buffer region

• zonecons resseq name spec [resn fres to lres -

[all | allC | allN | allO | allheavy] [fixed|free|buffer] ]+

This is the residue sequence option, which states that in the specified residue
sequence, starting from first residue fres to last residue lres, the specified
atom types (all atoms, all carbons, etc.) are to be in fixed or free or buffer
regions.

2.3.7.5 Residue
Residue-based scheme, such as backbone, sidechain, or amide of a residue to
be in fixed, free, or buffer region

• zonecons residue name spec [resn num -

[all|backbone|sidechain|amide|Calpha|Ncap|Ccap] [fixed|free|buffer] ]+

This is the residue option, which states that in the specified individual
residue(s), with residue number(s) num, the specified atoms (all, backbone,
sidechain, amide, α carbon, etc.) are to be in fixed or free or buffer regions.

2.3.7.6 Atom
Atom-based scheme, for any particular atom

• zonecons atom name spec [atmn num [fixed|free|buffer] resadj [0|1] ]+

The atom option, the lowest level option, which classifies each atom to be
in the fixed or free or buffer regions.
The option resadj is used for residue-based adjustment; if it equals 1, then
the whole residue associated with that particular atom will be classified in
the the same region (in this case the residue becomes the basic operational
unit). The default value for resadj is 0, which means no residue-based
adjustment is performed.

2.3.7.7 Sphere
Sphere-based scheme, freeze/relax any atoms inside a sphere with a center
and radius

• zonecons sphere [center x val y val z val | name spec resn num atom-

name name] -

[freeze | relax ] rad rad buffrad buffrad resadj [1|0]

This is the sphere option, which is used to relax or freeze a sphere with the
center located at residue number num and atom name name, and a radius
of rad. The buffrad is the radius for buffer, the shell between radius rad and

Impact 5.5 Command Reference Manual 41



Chapter 2: Setup System

buffrad becomes the buffer region. It should be noted that buffrad should
be bigger or equal than rad.
The option resadj has the same meaning as in the atom option, except the
default value here is 1, which means the residue-based adjustment is turned
on in sphere option by default.

2.3.7.8 Example Zonecons Input

Here is an example for how to use the various options for zone constraints.
setmodel

setpotential

mmechanics

quit

read parm file paramstd.dat noprint

enrg parm cutoff 20.0 -

listupdate 100 diel 1.0 nodist print 1

zonecons freeze name hiv allheavy

zonecons chain name hiv chainname A free chainname B fixed

zonecons sphere name hiv resn 20 atomname CA relax rad 10.0 buffrad 12.0

zonecons residue name hiv resn 10 backbone fixed resn 11 sidechain free

zonecons resseq name hiv resn 20 to 40 all buffer resn 41 to 100 all fixed

zonecons atom name hiv atmn 45 free atmn 50 fixed atmn 52 buffer

quit

2.3.7.9 Zonecons Keywords

Some of the keywords used above for various zonecons subtasks have the
following meanings. Not all keywords are appropriate for every zonecons
option, see the above syntax diagrams for a list of those allowed.

freeze General freeze option, to freeze all atoms, all carbons or all heavy
atoms.

chain Chain option, to freeze/relax/buffer proteins by chain name.

resseq Residue sequence option, to freeze/relax/buffer proteins by
residue sequence.

residue Residue option, to freeze/relax/buffer a residue’s backbone,
sidechain, etc.

atom Atom option, to freeze/relax/buffer any particular atom.

sphere Sphere option, to freeze/relax a sphere with a center and a ra-
dius.

free Free to move.

buffer In the buffer region.

fixed In the frozen region.

42 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

resadj Residue based adjust, default value is 0 for atom level option,
and 1 for sphere level option. If it equals 1, then the whole
residue will share the same region with one or more atoms spec-
ified by the zonecons subtasks.

allC All carbon atoms.

allN All nitrogen atoms.

allO All oxygen atoms.

allheavy All heavy atoms, atoms except H.

backbone Backbone atoms in a residue.

sidechain
Sidechain atoms in a residue.

amide Amide group atoms in a residue.

Calpha Alpha carbon atom in a residue.

Ncap N-terminal cap in a residue (NH2, NH3+).

Ccap C-terminal cap in a residue (COOH, COO-).

center To read in the cartesian coordinates of a sphere center directly.
The center can also be read in by specifying an atom name
atomname in a residue resn in a specie name spec.

rad value Radius of frozen or free zone.

buffrad value
Radius of buffer zone. The value of buffrad should be bigger
than rad.

chainname name
Chain name to be relaxed or fixed.

atomname name
Name of atom at center of sphere.

resn fres to lres
Starting from first residue fres and ending with last residue lres

Please note: resn (or resnumber or rnumber) residue numbers supplied in
the main input file have the following meanings: positive numbers mean the
residue numbering used in the original PDB file; negative numbers mean the
reordered Impact residue numbers, i.e., sequential, starting with 1; 0 means
all applicable residues.
Caution: The zonecons option alters many structural arrays. It is assumed
that all bonds angles and torsions that lie completely in frozen regions will
not change and therefore their entries in the structural arrays are deleted.
Also, in later energy calculations non-bonded or hydrogen bond pairs for
which both atoms are frozen are not stored or calculated.

Impact 5.5 Command Reference Manual 43



Chapter 2: Setup System

2.3.8 Subtask QMregion (QSite)

The QSite module allows a section of a protein and/or whole ligand(s) to
be treated quantum mechanically while the rest of the system is treated by
OPLS-AA. Gas phase 6-31G* Hartree-Fock (HF) and DFT energies, mini-
mizations, and transition state optimizations are currently implemented for
all amino acids, ligands, ions, and bound waters. Single-point LMP2 calcu-
lations are also supported. QSite solvation using continuum solvent (PBF
model) are possible as well.

2.3.8.1 QSite Overview

The QM/MM interface consists of a frozen localized single-bond QM molec-
ular orbital at each QM/MM boundary.9 The QM and MM regions interact
via a Coulomb interaction (between MM charges and the QM wave function)
and a van der Waals interaction (van der Waals parameters are employed
for both the QM and MM atoms). In addition there are QM/MM hydro-
gen bonding terms. Specialized MM-like correction parameters are used
for stretches, bends, and torsions involving atoms that touch or span the
QM/MM interface. These parameters are fit to reproduce local-MP2/cc-
pVTZ(-f) quantum chemical conformational energetics of each residue.
A QSite job requires both Impact and Jaguar input files. The job is initially
launched using the Jaguar program driver script jaguar. Once Jaguar de-
tects that it is doing a QSite job, it calls Impact, which then reads the main
input file (with protein, ligand data) and the QM region specifications. Im-
pact calculates the requisite MM energy/gradient terms and creates a Jaguar
input file for the QM region only. Control is then passed back to Jaguar,
which calculates the total QM portion of the QM/MM energy/gradient.
QSite geometry optimization uses an adiabatic approach. This means that
a full minimization of the MM region is performed by Impact before each
QM geometry step taken by Jaguar. During the QM step all of the MM
region except for a few atoms at the QM/MM interface are frozen in the
QM optimization/geometry steps and similarly the QM region is frozen in
the MM optimization process.
In defining the QM region for a QSite job, it may be necessary to use an
input structure that is not a correct Lewis structure. Ordinarily, Impact
would reject such a structure, upon reading it in via the build primary type
auto command. In order to bypass Lewis structure checking in such cases,
use the notestff keyword in the build primary command for reading in
the structure that will contain the QM region. See Section 2.2.1.1 [Primary
type Auto], page 17 for details of this command and keyword.

9 D.M. Philipp and R.A. Friesner,J. Comput. Chem. 20, 1468 (1999);
R.B. Murphy, D.M. Philipp, R.A. Friesner, Chem. Phys. Lett. 321, 113 (2000); and
R.B. Murphy, D.M. Philipp, R.A. Friesner, J. Comput. Chem. 21, 1442 (2000).

44 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

The following subsections describe the Impact and Jaguar QM/MM inputs
and illustrate the execution of a QSite run.

Here is the general syntax for the qmregion subtask:
• qmregion [ residue name spec [ all | resn

num chain chainid insert insertion_code molid num

[ cutb num ] ]

• qmregion atom name spec atom num

• qmregion ion name spec ionn num

2.3.8.2 QM protein region

The qmregion residue command is used to specify parts of proteins, or
entire molecules such as ligands or bound waters, as belonging to the QM
region.

The QM region of a protein is specified by making QM/MM cuts or bound-
aries at the bonds emanating from the Cα carbon of any residue. In addi-
tion, whole residues can be designated as QM as long as they are inside the
boundaries of QM/MM cuts at more distant residues. The 5 types of cuts
and associated QM/MM regions are defined as follows and as depicted in
the following figures.

Cut 1: The Cα-N bond forms the boundary, and the Cα atom and its
attachments are in the QM region.

QM region

MM region

Cut #1

Figure QMMM−1; QM/MM regions
for backbone cut type 1. 

Cut 2: The Cα-C bond forms the boundary, and the Cα atom and its
attachments are in the QM region.

Impact 5.5 Command Reference Manual 45



Chapter 2: Setup System

QM region

MM region
Cut #2

Figure QMMM−2; QM/MM regions
for backbone cut type 2. 

Cut 3: The Cβ-Cα bond forms the boundary, and the side chain is the QM
region.

QM region

MM region

Cut #3

Figure QMMM−3; QM/MM regions 
for side chain cut type 3.

Cut 4: The N-Cα bond forms the boundary, and the amide nitrogen (N)
and its attachments are in the QM region.

46 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

QM region

MM region
Cut #4

Figure QMMM−4; QM/MM regions
for backbone cut type 4. 

Cut 5: The C-Cα bond forms the boundary, and the carbonyl carbon (C)
and its attachments are in the QM region.

QM region

MM region

Cut #5

Figure QMMM−5; QM/MM regions
for backbone cut type 5. 

Except for side chain cuts (type 3), the cut residue must be connected to
another pure (no cut) QM residue. Placing backbone cuts in consecutive
residues is not recommended because the boundary regions will interact too
strongly.

Impact 5.5 Command Reference Manual 47



Chapter 2: Setup System

Cuts in the following residues are not allowed, depending on the molecular
mechanics force field in use: for OPLS2001 and later force fields, sidechain
cuts in GLY, PRO, and ALA, and backbone cuts in PRO; for earlier force
fields, sidechain cuts in ARG, SER, THR, PRO, GLY, and ALA, and back-
bone cuts in GLY and PRO. To treat these residues as QM regions, place
backbone cuts on the adjacent residues on either side.
As an example, suppose the ala-gly-ser section of a . . . lys-ala-gly-ser-phe. . .
protein is to be represented in a QM fashion, with OPLS1999 in use for the
MM region. (The same reasoning would apply to the ala-gly section with
OPLS2001.) In this case a cut of type 5 (or 1 to include the lys sidechain in
the QM region) would be made in lys, and a cut of type 4 or (2 to include
the phe sidechainin the QM region) in phe. In addition, residues ala-gly-ser
would all be specified as fully QM, i.e. with no cuts. More commonly a set
of sidechain cuts of type 3 might be made for residues that make important
contacts with a ligand to allow the contact regions and the ligand all to be
treated quantum mechanically.
Protein QM regions are specified in task setmodel with syntax like the
following:

qmregion residue name prot resn 142 molid n cutb 3

This directive places the sidechain of residue 142 in species prot, molecule
number n in the QM region. The integer following cutb specifies the type
of cut to be made.
Alternatively, the whole residue can be made QM (no cut) by omitting the
cutb-value pair:

qmregion residue name prot resn 142 molid n

The QM/MM interface requires that each protein segment of the QM region
be defined either by a single cut of type 3, or by matching cut specifications
for the N- and C-terminal residues of the segment in question. In the latter
case, all intervening residues must explicitly be specified as QM in qmregion
specifications.
Note that QSite requires that the whole system fit into one Impact species.
This can be done by putting all molecules (proteins or ligands) into one
species using the mole notation in the build primary commands, or by
creating a single entry containing all the molecules in the Maestro Project
Table or Workspace. QSite calculations can be carried out with PBF (but not
SGB) implicit water or can be run with the bound waters typically found
in PDB files. Solvent boxes, which require periodic boundary conditions,
however, cannot be used.
A ligand or bound water molecule can be designated as a pure QM region
with the same syntax as is used for an entire residue (between cuts, but not
containing any cuts itself) in a protein:

qmregion residue name prot resn rnum molid molnum

48 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

where residue number rnum, in molecule number molnum, denotes the de-
sired molecule in species prot. This syntax (with no cutb specification) des-
ignates the whole molecule as a QM region. Note that QM/MM boundaries
cannot currently be made between ligand atoms.

2.3.8.3 Individual QM Atoms

The syntax
qmregion atom name spec atom num

indicates that the individual atom number num in species spec is to be
included in the QM region.

2.3.8.4 QM Ions

Ions can be included in the QM region first by building the ion or ions. The
following illustrates the placement of a Zn2+ ion:

CREATE

...

build newres zn2+ file zn

build primary ions name prot zn 1 xyz x 36.921 y 44.908 z -7.111 end

...

where build newres creates a Zn2+ residue with the name zn (the 1 following
zn is a specification for one ion), and build primary ions adds the ion into
the previously defined molecule of the species prot at coordinates (x,y,z).
The specification of the ion as a QM region is done as follows:

qmregion ion name prot ionn 1

specifies that ion number (ionn) “1” of species prot should be treated as
a QM ion. When multiple ions are present, one such qmregion directive
should be given for each ion that is to be QM.

2.3.8.5 Basis set specifications.

All of the standard basis sets used in Jaguar are available for the QM region
of a QSite setup. Then basis sets can be specified within the Impact input
as follows.

• basis name spec [ atom num | resnumber num | nil ] [ radius rad ] basis bset

The default basis used is 6-31G* (LACVP* for metals), which must be en-
tered into the Jaguar input file (see below) regardless of other basis set
specifications. To specify the basis on a particular residue the following
syntax applies:

SETMODEL

..

qmregion residue name dipep resn 2 cutb 3

..

basis name dipep resnumber 2 basis cc-pvtz(-f)

..

QUIT

Impact 5.5 Command Reference Manual 49



Chapter 2: Setup System

This will setup a cc-pvtz(-f) basis on the QM atoms of previously speci-
fied QM residue 2. Note that atoms comprising the QM/MM cut and their
bonded neighbors will automatically stay at 6-31G*. This restriction is nec-
essary since the QM/MM boundary region is parametrized with 6-31G*.
The code will automatically keep the necessary 6-31G* basis sets regardless
of basis set specifications made by the user.

The syntax for changing the basis set within a specified radius of a chosen
atom is:10

SETMODEL

..

qmregion residue name dipep resn 2 cutb 3

..

basis name dipep atom 34 radius 5.0 basis cc-pvtz(-f)

..

QUIT

will change the basis set to cc-pvtz(-f) on atoms within 5 Å of atom number
34. This atom must be in a residue or a ligand in the QM region as specified
by the qmregion commands.

2.3.8.6 QSite energy/minimization:

Single point QSite energies can be obtained using task analysis with the
subtask qmme, e.g.,

ANALYSIS

qmme

QUIT

will tell Impact to generate a QM/MM energy.

QSite geometry optimizations require the usual Impact MM minimization
section, e.g.:

MINM

conjugate dx0 0.05 dxm 3.0 rest 50

input cntl mxcyc 10000 rmscut 1.9e-1 deltae 0.5

run

QUIT

with no special QSite flags.

The following Impact example, and the Jaguar input example below, are for
a small polypeptide with a water molecule. A threonine residue and water
molecule constitute the QM region and are treated at the B3LYP level. The
rest of the structure is treated with molecular mechanics.

10 N.B.: The radius option is not available via Maestro, but you can add it by hand into the
input file

50 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

CREATE

build primary name species1 type auto read maestro file -

"qsite.mae"

build types name species1

QUIT

SETMODEL

setpotential

mmechanics

quit

read parm file -

"paramstd.dat" -

noprint

energy parm dielectric 1 nodist -

listupdate 10 -

cutoff 12

energy rescutoff byatom all

zonecons auto

qmregion residue name species1 resn 4 molid 1

qmregion residue name species1 resn 691 molid 2

basis name species1 resnumber 691 basis 6-31G

qmregion residue name species1 resn 3 molid 1 cutb 5

qmregion residue name species1 resn 5 molid 1 cutb 4

QUIT

The CREATE task above reads a Maestro file containing both the polypeptide
chain and the water molecule, into the single species species1. Based on the
connectivity data in this file, Maestro and Impact assign molecule numbers
1 to the peptide (because it includes the first atom listed in the file) and 2
to the water molecule (because it includes the next atom listed that has no
covalent bonds to molecule 1).
The qmregion commands describe the cuts between the QM and MM region
in the structure. All of residue number 4 in molecule number 1 is included
in the QM region, as is residue number 691 in molecule number 2: this is
the water molecule. The basis line tells Jaguar to treat residue number
691 with the 6-31G basis set rather than the default 6-31G*. The next line
specifies a cut of type 5 in residue number 3 in molecule 1. Type 5 places
the cut in the C-Cα bond with the sidechain in the MM region. Residue
number 5 in molecule 1 has a cut of type 4, which is through the N-Cα bond
with the sidechain in the MM region.

2.3.8.7 QSite Transition State Optimization

QSite can perform optimizations to transition state structures using three
different methods. The method you choose will depend on what starting
structures you have. See the Jaguar User Manual for more information on
these methods.

• Standard method

Impact 5.5 Command Reference Manual 51



Chapter 2: Setup System

If you only have an initial guess structure for the transition state, QSite
can find the saddle-point closest to the starting structure by maximizing
the energy along the lowest-frequency mode of the Hessian and mini-
mizing the energy along all other modes.

• Linear Synchronous Transit (LST) method
If you have structures for the reactant and product, then QSite can use
a quasi-Newton method to search for the optimal transtion state geom-
etry. Given the two endpoint structures, and an interpolation value be-
tween 0.0 (≡ reactant structure) and 1.0 (≡ product structure), QSite
will try to construct an initial transition state structure at that point
along the reaction coordinate.

• Quadratic Synchronous Transit (QST) method
If you have structures for the reactant, product, and transition state
guess, then QSite will use the same quasi-Newton method as LST does,
but will use your initial guess for the transition state, rather than in-
terpolating as in LST.

Impact input file keywords:
• qmtransition [ reactant | product ] file fname [ gotostruct number ]

These keywords are necessary in the Impact input file when you have mul-
tiple structures to include in your calculation, as is required in both LST
and QST. LST calculations require the reactant to be loaded in a normal
build primary command, and the product structure to be defined with a
qmtransition keyword thus. QST calculations require the transition state
guess structure to be loaded by build primary, and both the reactant and
product structures defined by qmtransition.
Jaguar input file keywords:

&gen

igeopt = 2

iqst = [ 0 | 1 | 2 ]

qstinit = interpolation_value

&

These keywords are actually Jaguar keywords; see the Jaguar documentation
for more information. Briefly, igeopt=2 tells Jaguar to do a transition state
optimization rather than a minimization. iqst indicates which optimization
method is to be used, standard, LST, or QST, respectively. The LST method
calculates an initial guess structure by interpolating between the reactant
and the product, the qstinit parameter indicates where along the reaction
coordinate this structure should lay; the default is 0.5 (midway between).

2.3.8.8 Jaguar input section:

CAUTION: do not use the "qmme" energy option with a MINM section,
they are not compatible and their simultaneous use will cause erroneous
gradients.

52 Impact 5.5 Command Reference Manual



Chapter 2: Setup System

QSite calculations also require a short Jaguar input file specifying options
specific to the quantum region such as the charge and multiplicity of the
quantum region.
The prototypical input file for running a gas phase QSite optimization looks
like:

&gen

mmqm=1

basis=lacvp*

dftname=b3lyp

molchg=0

multip=1

iacc=1 vshift=1.0 maxit=100

&

where mmqm=1 signifies to Jaguar that a QSite calculation is requested,
dftname=b3lyp requests thar the B3LYP functional be used. Other DFT
methods should not be used with QSite. The basis specification is manda-
tory and will be properly overriden by any basis set specifications made in
the Impact input file as discussed above. molchg=2 is the charge of the QM
region, and multip=1 is its multiplicity. The last three keywords are set in
QSite jobs by default to aid convergence.
The QSite Jaguar input file for a solvation run consists of

&gen

mmqm=1

basis=6-31G*

igeopt=1

isolv=2

nogas=2

&

where isolv=2 requests a PBF solvation calculation and nogas=2 omits a
preliminary gas phase optimization normally done in pure QM solvation
geometry optimization calculations. The nogas=2 option will be set auto-
matically in Jaguar 4.111. The consolv pbf keyword must also be present
in the Impact input file as it is for pure MM solvation calculations.

2.3.8.9 Running QSite

QSite jobs can be run from the command-line by giving both input files to
the impact script. The syntax for running a QSite job is then:

% impact -j job.jaguar.in -i job.impact.inp -o job.log

where job.jaguar.in is the Jaguar input file name (e.g. ‘peptide.in’) and
job.impact.inp is the Impact input file name.
The QM/MM output contains the QM and most of the MM output will ap-
pear in ‘job.jaguar.out’ and the intermediate Jaguar output will appear in
‘job.jaguar.log’ as the job runs in the scratch directory (the Jaguar scratch

11 Jaguar v4.0 releases later than r21 will also set this automatically.

Impact 5.5 Command Reference Manual 53



Chapter 2: Setup System

directory is set in the ‘$SCHRODINGER/jaguar.hosts’ file. The QM/MM en-
ergy in the Jaguar output file has the heading;

Total QM-MM Energy: -3390.09684895821 hartrees

Solvation energies also appear in the Jaguar output file as:
sfinal: -2415.0483 kcal/mol

where sfinal is the solvation energy of the QM/MM system in water relative
to the gas phase.
In addition the total QM/MM solution phase energy is specified in the Jaguar
output as:

(P) Solution phase energy........ -428.00832706556 (Q+R+S).

The solvation energies printed in the Impact output of a QM/MM run are
not the QM/MM solvation energies.
The detailed requirements for running QSite are as follows. The QSite job is
lauched as a Jaguar job using the jaguar run script which should be in the
$SCHRODINGER directory. The Impact and Jaguar inputs should be in the
same directory by default. If it is desired to keep the Impact information in
a separate directory, the following lines should be added to the Jaguar input
file

&impact

mmdir=/wherever/you/want/the/data

&

In general however, you will want to keep all your Schrödinger software
grouped together.

54 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

3 Perform Simulations

This chapter describes tasks that perform Impact simulations such as energy
minimization and molecular dynamics, as well as linear response binding
affinity calculations and ligand docking.

3.1 Task Minimize
Minimize a system using either the steepest descent or the conjugate gradient
method. This task may only be called after the structural arrays have been
filled and after a potential energy function has been set using setpotential.
This task is used in many of the included examples.
Results are printed every 10 steps by default, but this value can be adjusted
via the enrg parm print keywords in the SETMODEL task (see Section 2.3.1.6
[Parm], page 25).
Example:

minimize

read coordinates formatted file fname

steepest dx0 value dxm value deltae value

run

plot indiv quit

write coordinates formatted file fname

quit

3.1.1 Subtask Steepest
Use the steepest descent algorithm for energy minimization of a system.

• steepest dx0 value dxm value

dx0 Initial step size (default = 0.05).
dxm Maximum step size (default = 1.0).

3.1.2 Subtask Conjugate
Use the conjugate gradient algorithm for energy minimization.

• conjugate dx0 value dxm value maxit number

dx0 step size
Set the initial step size (default = 0.05).

dxm step size
Set the maximum step size (default = 1.0).

maxit step size
Maximum number of iterations for line search (default = 3).

rest Frequency of restarting with steepest descent (default =
number of atoms ×3).

Impact 5.5 Command Reference Manual 55



Chapter 3: Perform Simulations

3.1.3 Subtask Tnewton

Use the truncated Newton algorithm (copyright (c) 1990 by Tamar Schlick
and Aaron Fogelson, updated November 1998 by Dexuan Xie and Tamar
Schlick, used by permission)1 for energy minimization.
PLEASE NOTE: This minimization algorithm cannot currently be used with
periodic boundary conditions, distance and torsional restraints and the Fast
Multipole Method.

• tnewton [nfull number] [nhscale number] -

[verbose number] [tncut value]

nfull Number of minimization steps per update of the long-range
forces (as defined by the tncut value). The default is 10, and
values higher than 20 are not recommended. Setting nfull too
high can result in unrealistic structures and/or failure of the
minimization. The short-range forces are updated at every min-
imization step.

nhscale Scale factor for the size of the Hessian matrix. The amount
of memory allocated for this matrix will be the nhscale value
times the number of atoms in the system. The default is 50.

verbose Controls the amount of printing. The default is 0. A positive
value will result in a large amount of output, and is not recom-
mended in general.

tncut Cutoff distance between short-range and long-range forces.
Forces between atoms more distant than this will be calculated
only every nfull minimization steps, as opposed to every step
for the short-range forces. The default is 10.0 Å.

3.1.4 Subtask Input
This subtask inputs parameters necessary for the minimizer.

• input cntl [ mxcyc num ] [ rmscut val ] [ deltae val ]

mxcyc The maximum number of cycles for the minimization (default
= 100).

rmscut Criteria for convergence of the RMS gradient (default = 0.01).

deltae Criteria for convergence of the change in energy for each atom,
average over the whole system (default = 1.0 · 10−7).

Important Notes:

1 For details, see Xie, D. and Schlick, T., “Remark on the Updated Truncated Newton
Minimization Package, Algorithm 702,” ACM Trans. Math Softw., 25, 108-122, March
1999, and Xie, D. and Schlick, T., “Efficient implementation of the truncated-Newton
algorithm for large-scale chemistry applications,” SIAM J. Opt., 10: 132-154, October
1999.

56 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

1. The values for both rmscut and deltae must be met before a run is
converged.

2. The minimization will stop when the convergence criteria are met.

3.1.5 Subtask Run

This command signals the program to start running the minimization. All
other parameters must be set correctly before run is executed.

3.1.6 Subtasks Read and Write

Impact provides the write command to save to a file the molecular system
coordinates in several formats. The write and read commands also offer a
simple way of saving a snapshot of the system (coordinates and, if so desired,
velocities) and restoring it afterwards.
The following description applies not only to task minimize but also to
dynamics, and montecarlo, although in some cases (to be discussed below)
not all options would make sense. There are three types of file that can be
used to hold snapshots of the system: PDB (brookhaven or impact format),
Maestro, residue template, restart and trajectory files.
To write a PDB file use the following syntax:

• write pdb [ brookhaven | impact | nil ] -

name species_name file filename

Note: only coordinates can be written to a PDB file. To read a PDB file
you must do so inside the create task.
To write a Maestro file use the following syntax:

• write maestro [ name spec1 [ name spec2] ] -

file filename

If the species to be written to the Maestro file are of type ‘auto’ the infor-
mation from the original Maestro file (or as converted from a PDB or SD file)
is preserved in the output of this command. If the species is of type other
than ‘auto’, Impact attempts to generate a valid Maestro file by creating a
type ‘auto’ temporary copy of the species before writing it to the file. If two
species are specified, a temporary species of type ‘auto’ obtained by merging
the two species is written to the file. In absence of species specification the
default is to merge both Impact species in the output file. To read a Maestro
file you must do so inside the create task.
The write restart and read restart commands are used to save and re-
store the coordinates (and velocities) of all particles in the system. A restart
file consists of a snapshot of the cartesian coordinates and, optionally, ve-
locities of each atom of the system. When reading or writing restart files
the behavior of Impact depends on the current task unless the files are writ-
ten and read using the external keyword, in which case Impact honors all
requests made on the command line.

Impact 5.5 Command Reference Manual 57



Chapter 3: Perform Simulations

• In task minimize only coordinates can be written or read. If the com-
mand line also specifies velocities Impact will not honor the request
unless external format is used, although no error will be generated.

• In task montecarlo only coordinates can be written but both coordi-
nates and velocities can be read.2

• In task dynamics velocities are always written to a restart file, even if
they are not specified on the command line. The user can, however,
choose not to read them back.

In all cases the usage is the same:
• [ read | write ] restart coordinates [ and velocities ]

[ box | nobox | nil ] -

[ formatted | unformatted | external | nil ] -

[ real8 | real4 | inte2 | nil ] -

file filename

The meaning of the keywords is explained below.
A trajectory file contains a sequence of snapshots of the system (coordinates
and, sometimes, velocities of all atoms). Normally trajectory files are read
using the table subtasks starttrack and stoptrack but they can also be
read wherever a restart file can be read.

• write trajectory coordinates [ and velocities ] [ box | nobox | nil ] -

[ unformatted | external | nil ] -

[ real8 | real4 | inte2 | nil ] -

file filename -

every number_of_steps

• read restart coordinates [ and velocities ] [ box | nobox | nil ] -

[ unformatted | external | nil ] -

[ real8 | real4 | inte2 | nil ] -

file filename -

skip to frame_number

Caution: reading a frame (snapshot) from a trajectory file using the last
syntax shown should be done with care, since strange things may happen if
the user mixes the coordinates with the velocities.

formatted
unformatted
external (default for restart and trajectory files) A formatted file is an

ASCII file containing the list of coordinates (and velocities, if
appropriate). The main advantage of these files is that they
are human readable, but they usually occupy too much space.
An unformatted file, on the other hand, is binary and thus
much smaller. The main disadvantage is that files generated
on one machine are usually not readily read on other machines.
This prompted the development of the external way of writing

2 Though velocities are not very meaningful in this case.

58 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

restart and trajectory files, which offers a compact (since it is bi-
nary), machine-independent representation. This is the default
for trajectory files and it is strongly recommended (unformatted
files may not be supported in the future). As mentioned above,
if the keyword external is specified Impact honors all requests
on the command line.

inte2
real4

real8 (default)
These keywords control the size of the data written to (read
from) a binary restart or trajectory file. When reading an
unformatted file they must be specified, but that is not neces-
sary when reading an external file since the program can find
this information from the file itself. The keyword inte2 will be
ignored when reading or writing an external file and real4 will
be substituted instead. The sizes are chosen as follows:

real8 Store the data as real*8 numbers. This is the high-
est precision available and uses the most disk space.

real4 Stores the data as real*4 numbers. This halves the
storage requirements and also reduces the precision.

inte2 This option is somewhat more complicated. The
numbers will be scaled by 1000. and stored as
integer*2 numbers. This will leave a maximum
of 5 significant figures and maximum values of
±32.767.

[ box | nobox | nil ]
Write (or don’t write) the dimensions of the simulation volume
with the coordinates (these dimensions are needed when per-
forming constant pressure simulations). If a constant pressure
simulation is being run, box is the default; otherwise it is nobox.
This option applies to trajectory and restart files.

every number of steps
Determines how often coordinate sets will be written.

skip to frame number
When reading a trajectory as a restart file one can specify which
frame (snapshot) to read. Frame numbers start at 1 and should
not exceed the number of frames that were written to the file.

Impact 5.5 Command Reference Manual 59



Chapter 3: Perform Simulations

3.2 Task Dynamics
The object of task dynamics is to perform a molecular dynamics (MD)
simulation for a system prepared by tasks create and setmodel.
Please Note: Dynamics simulations may not give useful results, or may ter-
minate with errors, if the initial structure has steric clashes or other prob-
lems. Even structures that have been minimized with other programs, or
those produced by Maestro’s build panel, may have such problems as mea-
sured with Impact’s force fields. A short Impact minimization task prior to
dynamics is useful for fixing such problems.

3.2.1 Subtask Input

Reads in program control parameters for the MD run.
• input cntl nstep steps [ delt time_step ]

• input cntl [ constant -

[ temperature [ byspecies ] [ relax value ] | totalenergy ] -

[ pressure [ dvdp value ] [ density value ] | volume ]

• input cntl [ initialize temperature -

[ forspecies ( name spec at T_i ) for all species | -

at T_i ] [ seed num ] ] -

[ stop rotations ] [ nprnt freq) ] -

[ tol tolerance ] [metric value]

• input cntl [ statistics [ on | off ] ]

Unless otherwise specified the default is to run MD simulations at con-
stant temperature and volume. This results in coupling the system to
an external heat bath (with a temperature that is independent of the
species). Using the keyword byspecies results in velocity scalings that
are independent for each species. In this case the user should specify
an initial temperature for each species using the forspecies keyword,
and all species should appear on the same (logical) line. Otherwise
some of the species will end up with the default initial temperature. If
‘constant totalenergy’ is specified instead there will be no scaling.1

Specifying ‘constant pressure’, as opposed to ‘constant volume’, re-
sults in coupling to a pressure bath using the algorithm of Berendsen et
al. (J. Chem. Phys., 81, 3684 (1984)). Molecular center of mass coordi-
nate rescaling is implemented. The distances between molecules change
proportionally to the change in box size and intramolecular distances re-
main unchanged. Note that a "molecule" is defined as the entity created
by a ‘build primary’ command. Center of mass coordinate rescaling is
ineffective for systems composed of a single molecule (systems built with
only one ‘build primary’ command). A solvent species is composed of
as many molecules as created by the ‘build solvent’ command.

1 The total energy may actually not be conserved, due to the effects of a sharp cutoff. In
most cases this will lead to an unstable simulation.

60 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

Independent of whether the simulation is run at ‘constant
temperature’ or ‘constant totalenergy’ the user can initialize the
temperature of all species (either the same for all or on a per-species
basis) with the keywords ‘initialize temperature’. Caution: by
default the temperature is not initialized since this could result in
overwriting the velocities read from a restart file. Right after a
minimization, the user should initialize the temperatures of all species
to sensible values. The user should not use ‘initialize temperature’
though, if there is an external restart file (with both coordinates and
velocities) read in.
Several parameters can be specified in the ‘input cntl’ line:

nstep Number of MD steps (must be larger than one!).

nprnt Gives the number of steps after which contributions to the
energy will be printed out (5).

delt Gives the time step in picoseconds (0.001).

relax Relaxation time in ps for velocity scaling (if using ‘constant
temperature’) (0.01).

seed Seed to be used to start the random number generator when
initializing the temperature of (any) species.

taup Relaxation time in ps for volume scaling (if using ‘constant
pressure’) (0.01).

dvdp Isothermal compressibility 1/V (dV/dP ), in units of atm−1.
The default is the value for water: 4.96 · 10−5 atm−1. This
quantity is needed for constant pressure simulations.

density Effective density (g/cm3) of solute molecules. Needed to
compute long-range corrections to the pressure (1.0).

tol Tolerance to be used when applying the constraints in SHAKE
and RATTLE (1.0 · 10−7).

stop rotations
Flag for stopping the center of mass motion. Default is not
to stop the center of mass motion.

statistics on
statistics off

Toggles collection of statistics on the fluctuations of the
different energy terms during the simulation. In earlier ver-
sions this was always on; now it is off by default.

• input target temperature T_f

• input target ( [ name spec ] temperature T_f ) repeated for all species

Allows the specification of the final temperature (T f ) for the whole
system or by species. The first form should be used only if the scaling

Impact 5.5 Command Reference Manual 61



Chapter 3: Perform Simulations

is done on a species-independent basis. If the byspecies keyword was
used, however, the second form must be used and all the species should
appear on the same (logical) line. Multiple ‘input target’ lines would
result in conflicts.
The actual temperature will fluctuate about the desired value. At each
MD step the kinetic energies will be scaled so the temperature will
approach the desired value on a timescale determined by the relax
parameter.
• input target pressure P_f

Reads in the final pressure (P f ) of the system. The same comment as
in the previous paragraph applies, mutatis mutandis.

3.2.2 Subtask Run

Performs the actual molecular dynamics run. The temperatures are initial-
ized at this step, not when the values are read from the ‘input cntl’ line.
The user can choose among three different algorithms for the integration of
the equations of motion: the Verlet algorithm, which is the default; and two
based on the reversible RESPA (r-RESPA) of Tuckerman, Berne and Mar-
tyna, J. Chem. Phys., 97 (1992). Currently at most three inner stages are
allowed and the frequency with which the corresponding forces are updated
is controlled by the parameters freqf (fast forces), freqm (medium and slow
forces) and freqs (slow forces). Currently freqm and freqs only have meaning
if the FMM (fast multipole) code is used. On the other hand, freqf can be
used with or without the FMM since it controls only the bonding forces.
If the FMM is used and freqs is present, the forces are separated in three
pieces: those arising from nearby bodies; those arising from bodies in the
first and second neighbors that are not very close, and those coming from
the local expansions. If freqs is not present but freqm is, the second and
third are collected together.

• run [ verlet | rrespa fast freqf [ medium freqm [ slow freqs ] ] ]

3.2.3 Subtasks Read and Write

Read or Write a) a restart file containing final coordinates, and velocities
(forces could also be written) or b) a trajectory file (see Section 3.1.6
[Read/write (minimize)], page 57).

3.2.4 Subtask Convert

This subtask is provided to ease the transition to the new, default, external
binary format (see Section 3.1.6 [Read/write (minimize)], page 57).

• convert -

from [ unformatted | external ] file filename -

to [ unformatted | external ] file filename -

[ real4 | real8 | inte2 ] [ box | nobox ] -

[ first start last end ]

62 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

Reads a trajectory file written in one format and writes it out in an-
other. The keywords box, nobox, real8, real4 and inte2 apply only
to the output file and allow the user to specify the corresponding op-
tions differently from the ones used when the input file was written (see
Section 3.1.6 [Read/write (minimize)], page 57). Note that inte2 is the
same as real4 when using the external format.
The parameters start and end allow the user to convert only a portion
of the trajectory file. Since both input and output formats can be the
same this is a handy way of extracting a consecutive sequence of frames.

Impact 5.5 Command Reference Manual 63



Chapter 3: Perform Simulations

3.3 Task Hybrid Monte Carlo (HMC)
The Hybrid Monte Carlo (HMC) method is often called “bad MD but good
MC”. Even though HMC is regarded as a Monte Carlo method, it uses
Molecular Dynamics to perform the conformation-space search. Thus, in
many respects, HMC’s subtasks can be compared to those for Molecular
Dynamics, as both usually call the same functions. Since molecular dynamics
is only used for generating new conformations, a much larger time step
can usually be used (this is why it is called bad MD), with the Metropolis
criterion determining which moves to accept or reject.

3.3.1 HMC Methodology

The J-Walking and S-Walking methods are also implemented on the basis
of the HMC protocol, and can be turned on by specifying subtasks. Since
HMC performs the same simulation as does constant temperature molecular
dynamics, many input controls for constant temperature MD are also suit-
able for HMC or are very similar for it, as you can see from the example
shown below.

The following is a brief description of the S-walking (Smart Walking) method
proposed by R. Zhou and B. J. Berne.1 The S-Walking method is closely re-
lated to the J-Walking method proposed by Frantz et al.2 Like the J-Walking
method, the S-Walking method runs two walkers, one at the temperature of
interest, the other at a higher temperature that more efficiently generates
ergodic distributions. Instead of sampling from the Boltzmann distribution
of the higher temperature walker as in J-Walking, S-Walking first approx-
imately minimizes the structures being jumped into, and then uses the re-
laxed structures as the trial moves at the low temperature. By jumping into
a relaxed structure, or a local minimum, the jump acceptance ratio increases
dramatically. This makes the protein system easily undergo barrier-crossing
events from one basin to another, thus greatly improving the ergodicity of
the sampling. The method approximately preserves detailed balance pro-
vided the time between jumps is large enough to allow effective sampling of
conformations in each local basin.

Here is a very simple example of a HMC calculation that uses S-Walking

1 J. Chem. Phys., 107, 9185 (1997)
2 J. Chem. Phys. 93, 2769 (1990)

64 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

HMC

input cntl mxcyc 10000 nmdmc 5 delt 0.0015 relax 0.01 seed 101 -

nprnt 100 tol 2.0e-7

input cntl swalk cycgap 5000 cycrec 20 minstep 100 -

jtemp 500.0 jrate 0.1

input target temperature 300.0

write trajectory coordinates and velocities every 10 -

external file pentpep.trj

run

write restart coordinates and velocities formatted file pentpep.rst

write pdb brookhaven name pentpep file pentpep_swk.pdb

QUIT

3.3.2 Subtask Input

Reads in program control parameters for the HMC run.
• input cntl mxcyc cycles [ nmdmc num ] [delt time_step ] -

[ relax val] [ seed num ] [ stop rotations ] [ nprnt freq ] -

[ tol tol ] [metric value]

• input cntl [ statistics [ on | off ] ]

• input cntl [ swalk | jwalk ] [ cycgap cycles ] [cycrec cycles ] -

[ jtemp temp ] [ jrate rate ] [ minstep steps ] [metric num ]

• input target temperature T_f

HMC samples the conformation space with the canonical ensemble.
Thus the underlying molecular dynamics by default is constant tem-
perature constant volume MD. This results in coupling the system to
an external heat bath with a temperature that is specified by ‘target
temperature’. Note that unlike dynamics, there is no ‘initialize
temperature’ option for HMC. Instead, HMC initializes velocities to a
distribution based on ‘target temperature’ at the beginning of each
HMC step.
Several parameters can be specified in the ‘input cntl’ line:

mxcyc Number of HMC cycles to be performed.

nmdmc Number of MD steps per HMC cycle (5). The total number
of MD steps will be equal to (mxcyc * nmdmc).

nprnt Number of MD steps after which contributions to the energy
will be printed out (5).

delt Time step in picoseconds (0.001).

relax Relaxation time in ps for velocity scaling (if using ‘constant
temperature’) (0.01).

seed Seed to be used to start the random number generator when
initializing the velocities for any species.

tol Tolerance to be used when applying the constraints in SHAKE
and RATTLE (1.0 · 10−7).

Impact 5.5 Command Reference Manual 65



Chapter 3: Perform Simulations

jwalk Turn on the jwalk option. This option performs J-Walking
with other parameters specified by following items. It runs
an extra high-temperature walker for barrier crossing, so
the total MD steps will be doubled.

swalk Turn on the swalk option. This option performs S-Walking
with other parameters specified by following items. It also
runs an extra high-temperature walker for barrier crossing,
so the total MD steps will be doubled. The difference be-
tween swalk and jwalk is that swalk option performs a
rough local minimization for high-temperature conforma-
tions, while the jwalk option does not.

cycgap Number of HMC cycles for the high-temperature walker or
low-temperature walker before they switch (1000). The two
walkers are run in tandem.

cycrec Number of HMC cycles between records written of the
high temperature-walker’s configuration (20), where cyc-
gap/cycrec = number of records stored in file highT.cnf.

jrate Trial jump rate (1.0%).

jtemp Jump-S/Jwalker’s (high-temperature walker) temperature
(500.0 K).

minstep Steepest decent minimization steps in S-walking (100)

metric Parameter for ergodicity analysis (0). metric = 1, perform
ergodic metric calculation; metric = 0, no metric calcula-
tion.

stop rotations
Flag for stopping the center of mass motion. Default is not
to stop the center of mass motion.

statistics on
statistics off

Toggles collection of statistics on the fluctuations of the
different energy terms during the simulation. In earlier ver-
sions this was always on; now it is off by default.

• input target temperature T_f

Allows the specification of the final temperature (T f ) for the whole
system. The actual temperature will fluctuate about the desired value.
At each MD step the kinetic energies will be scaled so the temperature
will approach the desired value on a timescale determined by the relax
parameter.

66 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

3.3.3 Subtask Run

Performs the actual molecular dynamics run, as described in the Molecular
Dynamics Run subection (see Section 3.2.2 [Run (dynamics)], page 62). The
temperatures are initialized at this step, not when the values are read from
the ‘input cntl’ line. The user can choose among three different algorithms
for the integration of the equations of motion: the Verlet algorithm, which
is the default; and two based on the reversible RESPA (r-RESPA) of Tuck-
erman, Berne and Martyna, J. Chem. Phys., 97 (1992). Currently at most
three inner stages are allowed and the frequency with which the correspond-
ing forces are updated is controlled by the parameters freqf (fast forces),
freqm (medium and slow forces) and freqs (slow forces). Currently freqm
and freqs only have meaning if the FMM (fast multipole) code is used. On
the other hand, freqf can be used with or without the FMM since it controls
only the bonding forces. If the FMM is used and freqs is present, the forces
are separated in three pieces: those arising from nearby bodies; those arising
from bodies in the first and second neighbors that are not very close, and
those coming from the local expansions. If freqs is not present but freqm is,
the second and third are collected together.

• run [ verlet | rrespa fast freqf [ medium freqm [ slow freqs ] ] ]

3.3.4 Subtasks Read and Write

Read or Write a) a restart file containing final coordinates, and velocities
(forces could also be written) or b) a trajectory file (see Section 3.1.6
[Read/write (minimize)], page 57).

3.3.5 Subtask Convert

This subtask is provided to ease the transition to the new, default, external
binary format (see Section 3.1.6 [Read/write (minimize)], page 57).

• convert -

from [ unformatted | external ] file filename -

to [ unformatted | external ] file filename -

[ real4 | real8 | inte2 ] [ box | nobox ] -

[ first start last end ]

Reads a trajectory file written in one format and writes it out in an-
other. The keywords box, nobox, real8, real4 and inte2 apply only
to the output file and allow the user to specify the corresponding op-
tions differently from the ones used when the input file was written (see
Section 3.1.6 [Read/write (minimize)], page 57). Note that inte2 is the
same as real4 when using the external format.
The parameters start and end allow the user to convert only a portion
of the trajectory file. Since both input and output formats can be the
same this is a handy way of extracting a consecutive sequence of frames.

Impact 5.5 Command Reference Manual 67



Chapter 3: Perform Simulations

3.4 Task Linear Response Method (Liaison, LRM,
or LIA)

Liaison, embodied in the LRM or LIA task, is Schrödinger’s implementation of
the Linear Response Method (LRM), also called the Linear Interaction Ap-
proximation (LIA), a method of combining molecular mechanics calculations
with experimental data to build a model scoring function for the evaluation
of ligand-protein binding free energies.

3.4.1 Liaison Overview

LRM-type methods were first suggested by Aqvist (J. Aqvist, C. Medina
and J. EA. Samuelsson, Protein Eng. 7, 385-391, 1994; T. Hansson and J.
Aqvist, Protein Eng. 8, 1137-1144, 1995), based upon approximating the
charging integral in the free energy perturbation formula with a mean value
approach in which the integral is represented as half the sum of the values
at the endpoints, namely the free and bound states of the ligand. Since then
they have been pursued by a number of research groups including that of
Jorgensen (D. K. Jones-Hertzog and W. L. Jorgensen, J. Med. Chem., 40,
1539-1549, 1997), who has reported very good results for a number of ligand
binding data sets. From a computational standpoint, this approximation
has a number of highly attractive features:

1. In contrast to free energy perturbation (FEP), where a large number of
intermediate windows must be evaluated, the LIA requires simulations
of only the ligand in solution and the ligand bound to the protein. The
idea is that one views the binding event as a replacement of the aqueous
environment of the ligand with a mixed aqueous/protein environment.

2. Again in contrast to FEP, one can study disparate ligands as long as
they have similar binding modes. FEP allows only very small changes
between ligands to be investigated; the differences in the data sets we
have examined up to this point are much more significant.

3. Only interactions between the ligand and either the protein or the aque-
ous environment enter into the quantities that are accumulated during
the simulation; the ligand-ligand, protein-protein and protein-water in-
teractions are part of the “reference” Hamiltonian and hence are used
to generate configurations in the simulation (via either Monte Carlo or
molecular dynamics) but are not used as descriptors in the resulting
model for the binding free energy (see below). This eliminates a consid-
erable amount of noise and systematic uncertainties in the calculations,
for example arising from different conformations of the protein obtained
from cocrystallized structures of different ligands.

4. The method as implemented by Jorgensen et al. contains three terms
in the empirical formula for the binding energy: electrostatic, van der
Waals, and solvent accesible surface area (SASA):

68 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

∆G = α(〈U b
elec〉 − 〈U f

elec〉) + β(〈U b
vdw〉 − 〈U f

vdw〉) + γ(〈U b
SASA〉 − 〈U f

SASA〉)

〈...〉means ensemble average from a Monte Carlo or Molecular Dynamics
simulation, and all terms are evaluated only for interactions between
ligand and its “environment”. Aqvist et al. used only two terms in
their original work, i.e., electrostatic and van der Waals interaction.
However, Jorgensen et al. found that it is necessary to add one more
term for larger data sets, and the third term was also proposed to be
just a constant term. In our implementation as discussed later, the third
term is based on the cavity energy in the SGB continuum solvent model.

If the linear response approximation was rigorously valid, the coefficient
of the electrostatic term would be 0.5, corresponding to the mean value
approximation to the charging integral. In fact, one can recover a value very
close to this for less complex systems, such as solvation of small molecules in
water. However, some of the steps involved in the binding event, such as the
removal of water from the protein cavity and subsequent introduction of the
ligand, are unlikely to be accurately described by a linear model. Therefore,
in practice, optimization of fitting parameters yields electrostatic coefficients
that are significantly different from the ideal value of 0.5. By allowing this
empirical element, one is sacrificing generality; the method probably requires
that the ligands have similar binding modes, and new parameters must be
developed for each receptor. In return, however, one can obtain a reasonable
level of accuracy (reflected in cross-validation studies as well as the overall
fitting accuracy) with a modest expenditure of CPU time, under assumptions
that are quite reasonable for many structure-based drug design projects.
We have developed an implementation of the LIA, in the context of the
Impact program, using the generalized Born continuum solvation model and
the OPLS-AA force field of Jorgensen and coworkers. To our knowledge, this
is the first commercially available version of the LIA and the first version
of any type to utilize continuum solvation. Key features of the Schrödinger
implementation are as follows:
1. First, we replaced the solvent accessible surface area term in Jorgensen’s

LIA formulation by the cavity term in the continuum solvent model:

∆G = α(〈U b
elec〉 − 〈U f

elec〉) + β(〈U b
vdw〉 − 〈U f

vdw〉) + γ(〈U b
cav〉 − 〈U f

cav〉).

We think it makes sense to use such a term in the context of a continuum
solvent model. Indeed, it is not clear why the solvent accessible surface
area is needed in an explicit solvent model, since waters are explicitly
represented already.

Impact 5.5 Command Reference Manual 69



Chapter 3: Perform Simulations

2. The use of a continuum model provides much more rapid convergence
of the simulations. The statistics on the various interaction terms are
significantly better converged than in an explicit solvent simulation, and
the required CPU time is much smaller.

3. We have implemented an automatic atom typing scheme for the OPLS-
AA force field that assigns charges, van der Waals, and valence parame-
ters with no human intervention. A key feature of OPLS-AA is excellent
reproduction of condensed phase properties, obtained via fitting to liq-
uid state simulations. Over the past years Jorgensen and coworkers have
rapidly extended the functional-group coverage of OPLS-AA to include
a larger number of pharmaceutically relevant species. This work will
be continued and expanded at Schrödinger and at Columbia University
(Prof. Richard Friesner) in collaboration with Professor Jorgensen. We
intend in the coming year to increase both the accuracy and coverage
of OPLS-AA substantially.

4. The Maestro interface to Liaison produces scripts that allow a series of
Liaison jobs to be run automatically. This makes it convenient to use
the method in the context of an industrial structure-based drug design
effort, in which a large number of molecules need to be examined.

Here is a very simple LRM example that uses the SGB continuum solvent
model

LRM

assign ligand name drug

input cntl average every 10 file lrm_bound.ave

sample dynamics

input cntl nstep 10000 delt 0.001 relax 0.01 nprnt 100 seed 101 -

constant temperature

input target temperature 300.0

run rrespa fast 2

write restart coordinates and velocities formatted file cmpx_lrm.rst

write pdb brookhaven name prot file prot_lrm.pdb

write pdb brookhaven name drug file lig_lrm.pdb

QUIT

3.4.2 Subtask Assign

Specifies the LRM or LIA ligand in the LRM simulation. This ligand can
in fact be any entity; it could be a single ligand, a pair of ligands from a
ternary complex, or even a protein, as long as all the components reside in
a single species.

• assign ligand name spec

name spec determines the LRM ligand. The program thus will calculate and
collect all interactions between this ligand and its “environment” (protein
or water), but not the interactions within ligand itself or the protein (water)
itself. In the continuum solvent model, this means that we need to separate

70 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

the single and pairwise energies in the Generalized Born model into proper
partial contributions to represent the LIA interaction between ligand and
protein.

3.4.3 Subtask Param

Specifies LRM or LIA parameters, i.e., α, β, γ in the LRM simulation.

• param elec val vdw val cavity val

As mentioned above, the current method requires that new parameters be
developed for each receptor, so this option is not actually used at present.
Schrödinger’s Maestro user interface generates scripts, as described below,
that automate the LRM simulations on various ligands with known binding
energies, and perform the requisite data collection. Then the user can run
another script to calculate the LRM parameters and report the goodness
of the fit to the experimental binding energies. Finally, the user can apply
these parameters to predict the binding energies of new systems.

3.4.4 Subtask Input

Reads in program control parameters for the LRM simulation.

• input cntl average every num file filename

This command controls options for collection of the LRM statistics. It speci-
fies how often the average LRM interaction energies are to be calculated and
which file to use to print out the ensemble averages. (Other LRM-specific
options may also be specifiable here in the future.)

every Calculate the LRM ensemble average every num steps.

file Write out the ensemble averages to file filename.

3.4.5 Subtask Sample

Selects a sampling method for the LRM simulation, such as Molecular Dy-
namics or Hybrid Monte Carlo.

• sample [ dynamics | HMC ]

The commands that follow the choice of sampling method are identical to
those that would be needed if that method were invoked as a standalone task.
This is illustrated in the previous example, where dynamics was chosen as
the sampling method; all commands after dynamics are identical to those
expected for the dynamics task. The following example uses HMC as the
sampling method:

Impact 5.5 Command Reference Manual 71



Chapter 3: Perform Simulations

LRM

assign ligand name drug

input cntl average every 10 file lrm_bound.ave

sample HMC

input cntl mxcyc 10000 nmdmc 5 delt 0.0015 relax 0.01 seed 101 -

nprnt 100 tol 2.0e-7

input cntl swalk cycgap 5000 cycrec 20 minstep 100 -

jtemp 500.0 jrate 0.1

input target temperature 300.0

run

write restart coordinates and velocities formatted file cmpx_lrm.rst

write pdb brookhaven name prot file prot_lrm.pdb

write pdb brookhaven name drug file lig_lrm.pdb

QUIT

3.4.6 Scripts for Liaison simulation and fitting

Because generating fitting data for Liaison typically involves running similar
simulations on a number of different systems (the training set), we recom-
mend setting up these simulations, and the parameter-fitting job based on
their results, from the Maestro user interface. (See the Liaison User Manual
for examples of setting up such jobs.) To set up a Liaison simulation job
from Maestro, it is necessary to provide an overall job name and the struc-
tures that constitute the training set, which may be one receptor and several
ligands. Under the current working directory (CWD) from which you run
Maestro, it sets up a directory with the overall job name (‘fit_lia’ in the
following example), and a subdirectory under that for each ligand structure
in the training set (‘pose1_H15’, etc.):

hal9000% ls -l

total 912

-rw-r--r-- 1 banks glidegrp 119 Jul 20 11:19 bindE.expt

-rwxr-xr-x 1 banks glidegrp 374 Jul 20 11:19 change_sgbparam_fit_lia*

-rwxr-xr-x 1 banks glidegrp 312 Jul 20 11:19 fit_fit_lia*

drwxr-xr-x 7 banks glidegrp 116 Sep 10 10:27 fit_lia/

-rw-r--r-- 1 banks glidegrp 430687 Jul 20 11:19 fit_lia.mae

-rw-r--r-- 1 banks glidegrp 1170 Jul 20 11:19 liafit_fit_lia.out

-rwxr-xr-x 1 banks glidegrp 452 Jul 20 11:19 simulate_fit_lia*

hal9000% ls -l fit_lia

total 64

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose1_H15/

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose2_H16/

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose3_H17/

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose4_H12/

drwxr-xr-x 2 banks glidegrp 4096 Sep 10 10:27 pose5_H11/

72 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

hal9000% ls -l fit_lia/pose1_H15

total 1864

-rw-r--r-- 1 banks glidegrp 1170 Jul 20 11:19 bound.inp

-rw-r--r-- 1 banks glidegrp 799 Jul 20 11:19 free.inp

-rw-r--r-- 1 banks glidegrp 558 Jul 20 11:19 pose1_H15.bound.ave

-rw-r--r-- 1 banks glidegrp 12979 Jul 20 11:19 pose1_H15.bound.log

-rw-r--r-- 1 banks glidegrp 33587 Jul 20 11:19 pose1_H15.bound.out

-rw-r--r-- 1 banks glidegrp 186 Jul 20 11:19 pose1_H15.free.ave

-rw-r--r-- 1 banks glidegrp 12205 Jul 20 11:19 pose1_H15.free.log

-rw-r--r-- 1 banks glidegrp 35752 Jul 20 11:19 pose1_H15.free.out

-rw-r--r-- 1 banks glidegrp 10167 Jul 20 11:19 pose1_H15_lig.mae

-rw-r--r-- 1 banks glidegrp 9059 Jul 20 11:19 pose1_H15_lig_min.mae

-rw-r--r-- 1 banks glidegrp 430687 Jul 20 11:19 pose1_H15_rec.mae

-rw-r--r-- 1 banks glidegrp 363077 Jul 20 11:19 pose1_H15_rec_min.mae

In each of the ligand subdirectories, Maestro sets up simulation jobs for that
ligand alone (‘free.inp’), and the ligand-receptor complex (‘bound.inp’),
whose results give the energy terms in the LIA expression for ∆G above,
for which the α, β, and γ coefficients are then fit to experimental binding
energies for the systems in the training set. The command script simulate_
jobname (in this case simulate_fit_lia) runs the simulations in each direc-
tory (either sequentially, or if the user specifies multiple processors, in paral-
lel on the available processors), and renames the output files by prepending
the name of each ligand, e.g. ‘pose1_H15.bound.log’.
For the parameter-fitting component of Liaison, Maestro sets up the script
fit_jobname, which runs a least-squares fitting program to fit the out-
put of the simulations to experimental data, which it reads from the file
‘bindE.expt’ in this case. The fitting program prints its output to the file
‘liafit_jobname.out’. (Headers, ligand names, and intercolumn spaces are
abridged here to fit on the page.)

Input energy components:

Ligand vdw_f coul_f rxn_f cav_f vdw_b coul_b rxn_b cav_b Expt

1_H15 0.000 0.000 -29.979 3.775 -51.264 -23.280 6.290 1.104 -

9.350

2_H16 0.000 0.000 -30.520 3.941 -51.035 -27.165 1.046 1.095 -

11.190

3_H17 0.000 0.000 -23.622 3.959 -56.821 -26.490 9.024 1.095 -

12.160

4_H12 0.000 0.000 -25.415 3.735 -50.892 -17.000 -6.610 1.093 -

9.930

5_H11 0.000 0.000 -18.047 3.756 -56.033 -16.753 -1.967 1.094 -

11.890

Liaison SVD-fitted parameters: alpha*Dvdw + beta*Delec + gamma*Dcav:

alpha = 0.145880 +- 0.018366

beta = 0.031038 +- 0.004276

gamma = 1.517949 +- 0.383891

Chi-square: 202.172089

Impact 5.5 Command Reference Manual 73



Chapter 3: Perform Simulations

Binding energies fitted by SVD:

Ligand-Name SVD-Fitted Experiment

pose1_H15 -10.005 -9.350

pose2_H16 -10.648 -11.190

pose3_H17 -11.433 -12.160

pose4_H12 -10.795 -9.930

pose5_H11 -11.737 -11.890

RMSD error for binding energies = 0.636

3.4.7 Scripts for Liaison binding energy prediction

After fitting the LRM coefficients to experimental data for the training set,
predicting binding energies for one or more new systems is a simple matter of
running simulations on the new systems (bound and free, as for the training
set) to obtain the required energy terms, which are then multiplied by the fit
coefficients. In a prediction job, the Maestro interface sets up a script to run
the simulations, again called simulate_jobname , in the jobname directory,
where jobname may be different from that for the simulations on the training
set. (If it’s the same, the result will be to overwrite the previous simulate_
jobname script, but there may be advantages to keeping both the training
set and the predicted set under the same jobname directory. Here we use
the job name predict_lia for the prediction run.) Maestro also sets up the
script predict_jobname to calculate the predicted binding energies of one
or more new ligands, using coefficients obtained from the previous fitting
job. The following example is for a single ligand.

hal9000% ls -l

-rwxr-xr-x 1 banks 382 Jul 20 11:19 change_sgbparam_predict_lia*

-rw-r--r-- 1 banks 310 Jul 20 11:19 liapredict_predict_lia.out

drwxr-xr-x 3 banks 54 Sep 10 10:27 predict_lia/

-rw-r--r-- 1 banks 374748 Jul 20 11:19 predict_lia.mae

-rwxr-xr-x 1 banks 498 Jul 20 11:19 predict_predict_lia*

-rwxr-xr-x 1 banks 426 Jul 20 11:19 simulate_predict_lia*

hal9000% ls -l predict_lia

drwxr-xr-x 2 banks 4096 Sep 10 10:27 H06_altered_predict/

hal9000% ls -l predict_lia/H06_altered_predict

-rw-r--r-- 1 banks 558 Jul 20 11:19 H06_altered_predict.bound.ave

-rw-r--r-- 1 banks 13245 Jul 20 11:19 H06_altered_predict.bound.log

-rw-r--r-- 1 banks 33572 Jul 20 11:19 H06_altered_predict.bound.out

-rw-r--r-- 1 banks 186 Jul 20 11:19 H06_altered_predict.free.ave

-rw-r--r-- 1 banks 11883 Jul 20 11:19 H06_altered_predict.free.log

-rw-r--r-- 1 banks 30762 Jul 20 11:19 H06_altered_predict.free.out

-rw-r--r-- 1 banks 374748 Jul 20 11:19 H06_altered_predict_lig.mae

-rw-r--r-- 1 banks 10327 Jul 20 11:19 H06_altered_predict_lig_min.mae

-rw-r--r-- 1 banks 374748 Jul 20 11:19 H06_altered_predict_rec.mae

-rw-r--r-- 1 banks 364939 Jul 20 11:19 H06_altered_predict_rec_min.mae

-rw-r--r-- 1 banks 1228 Jul 20 11:19 bound.inp

-rw-r--r-- 1 banks 819 Jul 20 11:19 free.inp

74 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

The prediction script predict_jobname writes its output to the file
‘liapredict_jobname.out’:

LIA prediction: predict_lia

Input data:

Van der Waals term coefficient (alpha) : 0.14588

Electrostatic term coefficient (beta) : 0.031038

Cavity term coefficient (gamma) : 1.51795

Calculated results:

Ligand-Name Binding Energy (Kcal/mol)

H06_altered_predict -12.780

Impact 5.5 Command Reference Manual 75



Chapter 3: Perform Simulations

3.5 Task Docking (DOCK or GLIDE)
The DOCK task, also called Glide (for Grid-based LIgand Docking with
Energetics), is the heart of Schrödinger’s Glide product. The docking al-
gorithm searches for favorable interactions between a (typically) small lig-
and molecule and a (typically) larger receptor molecule, usually a protein.
The ligand and receptor typically occupy separate Impact species, though
they may also be separate molecules in the same species. The ligand must
be a single Impact molecule, while the receptor may include more than one
molecule, e.g. a protein and a cofactor. Because of the relative complexity of
this task, several examples of its use are included in this section, in addition
to the usual meta-examples under each subtask or command.

3.5.1 Description of the Docking Algorithm

The docking procedure for a given ligand molecule runs through two stages,
which we refer to as rough scoring and grid energy optimization. Each stage
relies on grids representing the receptor binding site, but the grids for one
stage are not the same as for the other. As in other docking programs
such as DOCK (E.C. Meng, B.K. Shoichet and I.D. Kuntz, J. Comput.
Chem. 13, 505, 1992) and Autodock (G.M. Morris, D.S. Goodsell, R.S.
Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, J. Comput.
Chem. 19, 1639, 1998), the grids can be precomputed and stored on disk, so
it is unnecessary to read in the receptor molecule, and perform computations
on it, repeatedly for multiple ligands or multiple conformers of the same
ligand. Using grids also makes computing the ligand-receptor interaction
energy an O(nlig) rather than O(nlig ∗ nprot) process, where nlig is the
number of atoms in the ligand and nprot is the number of atoms in the
receptor.
In a typical project, the user will set up the grids in one Glide run, and
dock ligands in one or more subsequent runs, as described below. It is not
currently possible to set up grids and dock ligands in the same run. (See
“Important Operational Notes” in the Glide Technical Notes.) In all cases,
the user should specify saving the grids to disk whenever calculating them.
In the current version of Glide, there are two possible ways to incorporate
ligand flexibility: include multiple conformers of a given ligand in the input
to Impact, or use the program’s internal conformation generator starting
with a single conformer of a given ligand. We strongly recommend the
latter. It covers conformational space systematically, and by clustering con-
formers that have a common “core,” it runs much faster than docking the
same number of externally generated conformers. In conjunction with in-
ternal conformation generation, Glide also allows ligand torsional flexibility
during the optimization of the ligand-receptor interaction energy, and we
recommend using this feature. Future versions of Glide will allow for recep-
tor flexibility; for now, scaling of the van der Waals radii of receptor atoms
(also available for ligand atoms) mimics some possible motions of the re-

76 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

ceptor, such as “breathing” to fit a larger ligand than the one present in a
particular co-crystallized structure.
In addition to generating or processing multiple conformations of a given
molecule, Glide can also dock, and compare the predicted binding affinities
of, multiple ligand molecules in a single Impact run, using a loop in the input
scripting language (DICE). In the case of externally generated conformers,
the same loop can run over a list of input structures that includes both
different molecules and different conformers of each, using Impact’s build
primary check syntax to determine which is which. (The input structures
for internal conformation generation can in principle also include multiple
conformers of the same ligand, but there is no reason to do so, and we do
not recommend it.)
The first stage of the algorithm, known as screening or rough scoring, mea-
sures the geometric “fit” between the ligand and receptor molecules, and ap-
proximations to specific interactions between them such as hydrogen bonds.
The grids for the rough-scoring stage contain values of a rough score function
representing how favorable or unfavorable it would be to place ligand atoms
of given general types (e.g. polar hydrogens, hydrogen bond acceptors, hy-
drophobic heavy atoms) in given elementary cubes of the grid. These grids
have a constant spacing, which defaults to 1 Å. The rough score for a given
pose (position and orientation) of the ligand relative to the receptor is sim-
ply the sum of the appropriate grid scores for each of its atoms. By analogy
with energy, favorable scores are negative, and the lower (more negative) the
better.
The screening stage is actually a hierarchical series of filters that drastically
narrow down the set of poses that are considered candidates for docking.
A given pose is defined by three Cartesian coordinates of the ligand center,
and three Euler angles. The ligand center is taken to be the midpoint of the
diameter, which in turn is taken to be the longest line segment connecting
two ligand atoms. Although some of the commands in the docking task use
the abbreviation cm in keywords to refer to this point, this definition is very
different from the centroid or “center of mass” of the ligand atom positions.
Note also that it may be far from the actual position of any ligand atom. (In
fact, if the ligand “wraps around” a convex portion of the receptor surface,
the ligand center may be inside the receptor.) The Cartesian coordinates
of the center position are defined relative to the origin of coordinates in the
receptor coordinate file. The Euler angles ψ and θ are defined relative to an
orientation in which the ligand diameter points along the z-axis; the φ angle
(rotation of the ligand about its diameter) is taken to be zero in the input
coordinates of the ligand. This biases one of the six coordinates in favor of
its input value, but we have not found this to be a problem even when the
input is the “correct answer”, e.g., a co-crystallized ligand-receptor complex.
It is also possible to choose the grid points to include the ligand center
coordinates in the input, which introduces additional bias. The ligand poses

Impact 5.5 Command Reference Manual 77



Chapter 3: Perform Simulations

that constitute the search space for the screening step correspond to discrete
values of these six coordinates. The ligand center is placed at selected points
on the rough-score grid, with the default being every other point. The ψ and
θ angles are taken from the polar coordinates of a set of points uniformly
distributed on the unit sphere (by default, a set of 302 such points from the
file ‘grid.pts’), and φ is distributed evenly between 0 and 360 degrees, with
the default being 25 values at intervals of 14.4 degrees.

Early filters in the screening stage are purely geometric, weeding out sites
for the ligand center that have no chance of being good docking positions,
because they are too far from the receptor or have no chance of shape com-
plementarity. The later filters involve evaluating the rough-score function on
subsets of the ligand atoms, such as those near the diameter (whose scores
should be independent of φ, so ruling them out for one value of φ kills 25
poses based on as few as 2 ligand atoms), or hydrogen-bonding atoms (or
others expected to make major contributions to favorable scores, so that if
the score is not favorable for the subset, there’s no point in evaluating it for
the rest of the ligand). Effective application of the filters can rapidly reduce
the number of poses to be considered from hundreds of thousands or millions
to a few dozen (or less), before evaluating the full rough-score function on
all the ligand atoms in any pose.

By default, and by our recommendation, the rough-scoring function is de-
fined on a 1 Å grid. In the interest of execution speed, the default sites
for the ligand center occupy a 2 Å grid consisting of alternating points of
the rough-score grid. The default rough-score function is based on count-
ing receptor atoms of various types within certain distances of grid points,
and thus has a step-function character, and can vary considerably from one
grid point to the next. Therefore a pose that gets an unfavorable score may
be very close in space to one that would get a favorable score, and possibly
would minimize to a good docked configuration. If the favorable score occurs
for a pose with the ligand center on a skipped grid point, it might never be
found. This is particularly likely for receptors with tight binding pockets.

To address this potential problem, Glide allows two enhancements of the
rough-score function, which we call greedy scoring and pose refinement.
Both involve examining scores at grid points surrounding the current po-
sitions of ligand atoms, but avoid the considerable expense of moving every
atom of every pose through a 3x3x3 set of neighboring points.

Greedy scoring involves setting up alternative rough-score grids, which at
each grid point incorporate some “influence” of the most favorable score in
the 3x3x3 neighborhood of the central grid point. To construct a “greedy
grid” given the original rough-score grid, the algorithm first finds the most
favorable (lowest or most negative) score in the 3x3x3 neighborhood. The
value stored in the greedy grid at the given grid point is then a linear com-
bination of the original grid value and the best neighboring one: greedy = x

78 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

* best + (1−x) * original. The default is x = 0.33, but the user may specify
any value between 0 (the same as non-greedy scoring) and 1, inclusive.
Pose refinement is a method for evaluating the rough-scores of selected poses
on a finer translational grid than the default. The refinement step takes
each pose that passed all the screening tests, and moves the ligand center
to neighboring grid points. The default step size for these moves is one grid
point (1 Å), which with the default spacing of ligand center sites means that
all the poses it covers other than the central one were skipped in the original
search. If any of these “refined” poses gets a better score than the original
(central) one, the algorithm passes the best such pose on to subsequent steps,
instead of the central one.
Greedy scoring adds computational overhead for reading (and the first time,
computing and writing) the greedy grid, and also, in our tests, about 10–20%
to the CPU time for screening poses of a given conformation (presumably
because more poses pass some of the filters). Pose refinement adds a negli-
gible amount of time to a multiple-conformation or multiple-ligand run, and
tends to decrease the number of poses that need to be passed to minimiza-
tion. Because they significantly enhance the likelihood of finding good poses,
we recommend using both features.
In a run with multiple externally-generated conformations of a given ligand,
the program executes most efficiently (in both time and memory use) if it
performs the (greedy) rough-score calculation for all the conformers first,
keeps some specified total number of best poses over all the conformers, and
then proceeds to pose refinement (and subsequent steps) only on those best
overall poses of the given ligand. For internal conformation generation, the
rough-scoring algorithm treats all the conformers for a given input ligand
in tandem, so it automatically does pose refinement only on the best poses
over all conformers.
The second stage of the docking algorithm begins with evaluation and min-
imization of a grid approximation to the nonbonded interaction energy be-
tween the ligand and the receptor. The grids store the values of the electro-
static potential due to the receptor atoms (with a constant or linear dielec-
tric, at user option), and the attractive and repulsive parts of the Lennard-
Jones energy. The docking algorithm is implemented only for the OPLS-AA
force field. Attempting to use it with a different force field will result in an
error exit from Impact.
The energy values are defined on an adaptive grid, with a finer spacing close
to the receptor for accuracy where the potential energy is changing rapidly,
and coarser far from the receptor to save time and space where the potential
varies slowly (and contributes less to the total in any case). The default for
the finest grid spacing is 0.4 Å, increasing to 3.2 Å in three steps. At user
option, the grid energy also incorporates smoothing functions that eliminate
the singularity in the potential energy at zero distance, and thus soften
the hard walls that could otherwise trap the algorithm in local minima. We

Impact 5.5 Command Reference Manual 79



Chapter 3: Perform Simulations

recommend starting the grid-energy minimization on the smoothed potential
surface, and annealing to the full OPLS-AA grid energy. To accomplish this,
include the subtask smooth anneal 2 in the DOCK task.
The energy evaluations and minimizations use a continuous function for the
energy, obtained by linear interpolation among the values at the corners of
the cube of grid points surrounding each ligand atom position. The position
and orientation coordinates of the ligand are varied continuously during the
minimization. With Glide’s internal conformation generation feature, we
also provide, and recommend, the option of varying ligand dihedral angles
during the minimization.
Glide performs its calculations in the context of two concentric rectangular
boxes, representing different aspects of the receptor active site. The bound-
ing box (or “ligand center box”) delimits the space in which the ligand center
(as defined above) can move. The size of this box determines the size of the
space that the algorithm explores, and thus the amount of computer time
(and to some extent memory) it takes to execute, so to optimize perfor-
mance, it should be as small as the user’s knowledge of the binding site will
allow. Around this bounding box, the enclosing box is the space in which
Glide defines and calculates the grid values for the rough-score and energy
functions. The algorithm rejects a candidate site for the ligand center if
any conformation and pose of the ligand, with its center at that site, would
have any atom outside the enclosing box. Therefore it is important to make
the enclosing box large enough relative to the bounding box so that the lig-
and will fit inside it at all likely sites for its center. Memory restrictions,
unfortunately, limit the size of the enclosing box to 50 Å on a side.
The location and dimensions of the bounding and enclosing boxes are either
calculated from the coordinates of the receptor atoms in residues that the
user specifies as active, taken directly from user specifications via the box
keyword in the receptor and/or screen subtasks, or read from grid files
previously stored to disk.

3.5.2 Example 1: Set up grids

The following example sets up grids based on the receptor in the co-
crystallized thrombin-inhibitor complex contained in PDB entry 1ETS. Sub-
sequent examples dock ligands to this receptor, as represented by these grids.
In the text accompanying these examples, we briefly explain the subtasks of
the DOCK task. In later sections devoted to each subtask, we provide more
detailed descriptions, and information about overriding defaults for param-
eters or options not shown here. It is important to note that all of the
subtasks except confgen, simil, and run simply set up the specifications
and parameters for the docking run; except for confgen, which immediately
generates conformations, and simil, which immediately generates or reads
similarity weights, Impact does not perform any docking calculations until
it encounters run. Thus every invocation of the DOCK task must end with

80 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

the run subtask. Note also that every subtask of this task occupies a single
logical line of the Impact input file. Thus it is crucial to include the hyphens
to indicate continuation of the command (subtask) on the next physical
line. Furthermore, it is important to remember that each physical line of
the Impact input file is truncated after 132 characters. For this reason, all
file names in the examples shown here are on separate physical lines (with
hyphens for continuation as needed). Users must insure that all their file
pathnames (including directories) are short enough to fit in this limit, which
typically means 128 or 130 characters in order to leave room for quotation
marks and/or hyphens. The Maestro user interface will refuse to write an
Impact input file, or start the corresponding job, if the user specifies a path-
name that is too long. We recommend that users who have complicated
directory structures should either run Impact in directories close to where
their files are located, or if this is not practical, use such Unix system fea-
tures as symbolic links or environment variables to shorten the names to be
written to the Impact input file.
It will be noted that unlike most Impact input files, none of the examples
in this section contains a setmodel task. This is because Glide computes
energies differently from other tasks such as minimize and dynamics. It
does so by precomputing receptor grids using the OPLS-AA force field, and
reading (and interpolating) energies from them for ligand atoms, rather than
looping over atom pairs. For this reason, this task does not require setmodel
to specify features and parameters of the energy function.

Impact 5.5 Command Reference Manual 81



Chapter 3: Perform Simulations

write file "1ets_single_grid.out" -

title "1ets_single_grid" *

CREATE

build primary name recep type auto -

read maestro file -

"1ets_single_grid.mae" -

tag REC_

build types name recep

QUIT

DOCK

smooth anneal 2

receptor name recep -

writef -

"1ets_single_grid" -

protvdwscale factor 0.900000 ccut 0.250000 -

box center read xcent -37.510494 ycent -28.946030 zcent 44.411289 -

boxxrange 27.346889 boxyrange 27.346889 boxzrange 27.346889 -

actxrange 27.346889 actyrange 27.346889 actzrange 27.346889

screen greedy -

box center read xcent -37.510494 ycent -28.946030 zcent 44.411289 -

ligxrange 12.000000 ligyrange 12.000000 ligzrange 12.000000 -

writescreen -

"1ets_single_grid.save" -

writegreed -

"1ets_single_grid_greedy.save"

parameter clean

final glidescore

run

QUIT

END

smooth Indicates that the calculation of the energy grids should incor-
porate short-distance smoothing functions. anneal 2 indicates
that the grids should include two different potential-energy sur-
faces, one with smoothing and one without. In a DOCK task to do
grid-energy optimization, smooth anneal 2 means that the op-
timization should start on the smoothed surface and end on the
unsmoothed one. Alternatively, a subsequent DOCK task could
include smooth anneal 1 to use only the smoothed surface, or
omit the smooth subtask in order to use only the unsmoothed
surface; but we strongly recommend using smooth anneal 2 in
all cases.

receptor Specifies the receptor molecule(s) and its active site.
name recep

Indicates that the receptor is in the Impact species
designated recep in the preceding CREATE task. If

82 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

this species contained more than one molecule, then
by default the receptor would include all molecules
in the species; specifying mole mol in this subtask
would restrict the receptor to that single molecule.

writef 1ets_single_grid
Indicates that the energy grids will be writ-
ten to files whose names are built from
the base 1ets_single_grid. Specifically,
‘1ets_single_grid.grd’ will contain struc-
tural information about the adaptive grid
itself (size and coordinates of each grid
box), ‘1ets_single_grid_vdw.fld’ will
contain the Lennard-Jones energy grid,
‘1ets_single_grid_coul.fld’ will contain the
Coulomb potential with a dielectric constant of 1,
and ‘1ets_single_grid_coul2.fld’ will contain
the Coulomb potential with a distance-dependent
dielectric of 1 ∗ r. In addition, Impact will
write the receptor structure to a Maestro format
file, ‘1ets_single_grid_recep.mae’, for use in
subsequent Glide jobs. (To compute and write just
one of the Coulomb files and not the other, use
the keyword writecdie for the constant dielectric
or writerdie for the r-dependent dielectric.
writerdie overrides writecdie, so if you specify
both, only the r-dielectric will be computed and
written. To specify a dielectric other than 1 or 1∗r,
use the dielco keyword in the minimize subtask.)
NOTE: The files read and written by Glide can be
very large (tens of megabytes). To save space on
user disks, and also to save time (network latency)
in environments where the user disk is on a server
other than the local CPU, we recommend reading
and writing these files on local “scratch” disks
while running Impact, and transferring them to
more “permanent” locations separately.

protvdwscale
Specifies a scale factor (factor) for the van der
Waals radii of nonpolar receptor atoms. All atoms
whose partial charge (absolute value) is less than
ccut are considered nonpolar for this purpose.
Specifying factor < 1.0, by effectively making
receptor atoms seem smaller to ligands, is a way
of letting the receptor “breathe” to accommodate

Impact 5.5 Command Reference Manual 83



Chapter 3: Perform Simulations

larger ligands than the one that happened to be in
the cocrystalized complex from which the receptor
structure was taken. Omitting this keyword will
result in no scaling (equivalent to factor 1.0), but
we recommend using some scaling factor such as
0.9 (which the Maestro interface writes to input
files). See the Glide Technical Notes for further
discussion of vdW scaling factors.

box Specifies the rectangular (in this case cubic) box
in which the rough-score and energy grids are
defined. (This is sometimes called the enclosing
box). center read indicates that the coordinates
(in Angstroms) of the center of the box are given
by the following xcent val ycent val zcent val
keyword-value pairs. boxxrange val, etc., give the
lengths (in Angstroms) of the box edges, which
are always parallel to the coordinate axes. The
rough-scoring algorithm rejects a ligand center
site if any orientation of the ligand at that site
would have any atoms outside the grid box, so it
is important to make boxxrange large enough so
as not to exclude any ligand positions that may
be desirable with some orientations of the ligand
but outside the box with others. If actxrange,
etc., are specified, they indicate that any residues
with any atoms in a box of that size (and the
given center) are counted as contributing to the
receptor surface, a set of points on the van der
Waals surface of the specified atoms, which is
used to determine distances of grid points or
boxes from the receptor. We strongly recommend
actxrange = boxxrange, etc., but problems
with the surface-generation algorithm require
actxrange, etc., no greater than 50.0. In such cases
it is acceptable to use boxxrange > actxrange,
etc., but in fact boxxrange > 50.0 is probably not
necessary except for unusually large ligands or
broad binding regions.

screen Requests the rough-score screening phase of the calculation (in
this case, just setting up the rough-score grids), and specifies
parameters for its performance.

greedy Use the greedy-scoring algorithm.

84 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

box Specifies the box in which the ligand center is
moved. (Sometimes called the bounding box.) As
in the receptor subtask, center read indicates
that the coordinates of the box center are to be
read from the following specification. In order to
leave equal space for ligand atoms on all sides of
the bounding box, its center should be the same
as that of the “enclosing box” specified in the
receptor subtask; but for historical reasons, Im-
pact will accept specification of different centers for
the two boxes. ligxrange 12.0 ligyrange 12.0
ligzrange 12.0 indicates that the ligand center
should move in a box of dimensions 12 Å on a side
(i.e., 6 Å in each positive and negative direction from
the center of the box).

writescreen
Write the rough-score grids to the indicated file.

writegreed
Write the greedy-score grids to the indicated file.

parameter
This subtask specifies various general parameters and conditions
for running the DOCK task. clean tells Impact to delete various
dynamically-allocated arrays after the task is completed. If there
were subsequent DOCK tasks in this job, they would need the data
stored in those arrays, so clean would not appear here.

final Specifies the “final” scoring function that Glide is to use for rank-
ing ligands. glidescore indicates Schrödinger’s proprietary
GlideScore (tm) scoring function, adapted from the ChemScore
function found in the literature.1 noglidescore would indicate
using just the minimized grid energy (Coulomb + vdW), which in
general is inadequate for comparing different ligand molecules.
The final glidescore subtask is needed here, even though this
task does not dock any ligands, because GlideScore requires in-
formation about the receptor molecule that may not be available
in the actual docking task. Glide writes this information to a
file called basename.csc, where basename is the name specified
with receptor writef, in this case 1ets_single_grid.

run

Run the calculation. The output consists of the grid and
receptor data files, for use in subsequent docking tasks or

1 Eldridge et al. J. Comput. Aided Mol. Design, 11 p. 425–445, 1997

Impact 5.5 Command Reference Manual 85



Chapter 3: Perform Simulations

jobs. In this case, they will be ‘1ets_single_grid.grd’,
‘1ets_single_coul.fld’, ‘1ets_single_grid_coul2.fld’,
‘1ets_single_grid_vdw.fld’, ‘1ets_single_grid.save’,
‘1ets_single_grid_greedy.save’, ‘1ets_single_grid_recep.mae’
(receptor data for use by the report subtask in a subsequent
job or DOCK task), and ‘1ets_single_grid.csc’. The ‘.grd’
and ‘.fld’ files are binary, the rest are ASCII.

3.5.3 Example 2: Single Ligand, Single Conformation

The following example uses the receptor data and grid files that the previous
one wrote, to dock a single ligand, which happens to be the cocrystallized
ligand from the same “1ets” thrombin-inhibitor complex as the receptor.
This example shows rigid docking of a single conformation of the ligand. The
next (multi-ligand) example will show internal conformation generation, and
torsional flexibility in the energy optimization stage.
This example contains four different DOCK tasks, for different stages of the
calculation. Some of these could be combined for this particular run, but are
separated either because that’s the way they would appear in a multi-ligand
run (some within a WHILE loop, others outside it), or in order to illustrate
different options for the commands included in the DOCK task.

write file "1ets_single_dock.out" -

title "1ets_single_dock" *

DOCK

smooth anneal 2

receptor rdiel readf -

"1ets_single_grid"

screen readscreen -

"1ets_single_grid.save" -

greedy readgreed -

"1ets_single_grid_greedy.save" -

maxkeep 1000 scorecut 100.000000

ligand multiple maxat 100 maxrot 15 -

ligvdwscale factor 0.800000 ccut 0.150000

parameter setup save maxconf 1

final glidescore

report setup by glidescore nreport 500 -

maxperlig 1 rmspose 0.500000 delpose 1.300000

run

QUIT

CREATE

build primary name lig type auto read maestro file -

"1ets_single_dock.mae" -

tag LIG_ gotostruct 1

build types name lig

QUIT

86 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

DOCK

ligand name lig

screen

parameter save

run

QUIT

DOCK

smooth anneal 2

ligand keep

screen noscore refine maxref 100

parameter save

final glidescore read -

"1ets_single_grid.csc"

minimize itmax 100 dielco 2.000000

scoring ecvdw -25.000000 hbfilt -0.700000 metalfilt 0.000000 -

hbpenal 3.000000

report collect -

rmspose 0.500000 delpose 1.300000

run

QUIT

DOCK

parameter clean final

report -

rmspose 0.500000 delpose 1.300000 write filename -

"1ets_single_dock"

run

QUIT

END

The first DOCK task above (sometimes called the setup task) is somewhat
similar to the one in the previous example, except that it reads rather than
writes files, and that it indicates (through the ligand subtask) that one or
more ligand structures are to be docked in this job.

receptor

The readf keyword indicates reading energy grids from
files with the base name given, which in this case are the
ones written in the previous example. rdiel means use the
Coulomb potential computed with the r-dielectric (and stored
in ‘1ets_single_grid_coul2.fld’) for all energy calculations.
Since everything is read from files, no other information about
the receptor (active site, box size, etc.) is needed here.

ligand In subsequent DOCK tasks in this job, this subtask gives informa-
tion about the ligand(s) to be docked. In this “setup” task, how-
ever, it simply indicates that there will be ligands, so that Glide
can set up arrays to hold them. Even though there is only one

Impact 5.5 Command Reference Manual 87



Chapter 3: Perform Simulations

ligand in this case, the multiple keyword must precede maxat
and maxrot, which give the maximum number of atoms and ro-
tatable bonds allowed in any ligand molecule in the current job.
If we were indeed looping over multiple ligands, any one that
exceeded these limits would be skipped. In addition, maxat is
used in allocating storage for the ligand atom coordinates. The
ligvdwscale keyword invokes scaling of the ligand vdW radii
used in energy calculations, similar to protvdwscale above. As
for the protein, omitting this keyword results in setting factor
1.0 (no scaling), but we recommend using a scale factor < 1.0,
and the Maestro interface writes factor 0.8, as shown. Again,
see the Glide Technical Notes for further discussion.

parameter
The setup keyword indicates that no actual calculations are to
be done in this invocation of the task. Instead, the receptor and
ligand data are simply read in and stored in dynamically allo-
cated arrays. (The sizes of most of these arrays are read from
the same grid files that contain their contents.) The save key-
word indicates that these arrays should be retained in memory
for use by subsequent invocations of the task. The maxconf key-
word gives the dimension of dynamically allocated arrays that,
in general, store information for multiple ligands or (externally
generated) conformations. In this case, maxconf 1 indicates a
single ligand structure.

screen As with readf above, readscreen and readgreed here mean
read the rough-score grids from the indicated files, and we don’t
need a box specification because it’s in the same files. The
following additional parameters give details of the rough-score
screening task to follow.

maxkeep Indicates the maximum number of ligand poses to
be passed to the energy minimization. The number
actually kept may be less than this, because fewer
poses pass the various rough-score filters.

scorecut Rough-score window for passing poses to
grid-energy optimization. A pose survives if its
rough-score is within scorecut of the best pose
accumulated so far.

report Gives instructions for the “reporting” (output) of docked ligand
poses (A pose is the structure of a single conformation of a
single ligand, in a single position and orientation relative to the
receptor). The setup task requires some information about what
is to be reported and how.

88 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

setup Indicates that we’re specifying the reporting func-
tion here. Of course we can’t actually collect data
for the report (much less write it to output files) un-
til we’ve actually docked the ligands. But we need
to allocate space for the report data, etc.

by glidescore
Indicates that the poses to be reported will be sorted
in order of the GlideScore scoring function.

nreport The maximum number of poses to report. (The
actual number may be smaller because fewer pass
all screening or scoring tests, or because of the
maxperlig keyword.

maxperlig
The maximum number of poses to report for any
given ligand molecule. maxperlig 1 is particularly
useful for rapid screening of large databases, produc-
ing one pose for each of the nreport best-scoring lig-
ands, which can then be subjected to more detailed
calculations.

rmspose
delpose The rough-score and energy-optimization stages of

a Glide may generate poses for a given ligand that
are similar to each other. In order to avoid dupli-
cation in the report, these keyword-value pairs in-
dicate that two poses of the same ligand are to be
considered distinct (and thus both reported if they
otherwise qualify) only if the RMS deviation of their
atomic positions exceeds the rmspose value, or the
maximum deviation for any atom exceeds delpose.
These keyword-value pairs must appear in every oc-
curence of the report subtask in a given Glide input
file.

The second DOCK task above runs the rough-score screening (except for pose
refinement). Glide knows that it should do this (rather than just allocate
arrays) because there is no setup keyword in the parameter subtask.

ligand name lig
Copy the indicated Impact species into the Glide ligand arrays.

screen Run the rough-score screening using the parameters and infor-
mation specified in the previous DOCK task.

The third DOCK task runs pose refinement and grid-energy optimization.

Impact 5.5 Command Reference Manual 89



Chapter 3: Perform Simulations

smooth anneal 2
Needed here to tell Glide to use both the smoothed and “hard”
potential energy surfaces in the actual minimization. It’s possi-
ble to use smooth anneal 2 in the first task in order to calculate
or read both surfaces, but smooth anneal 1 here to use only the
smoothed one, or leave out the smooth subtask here to use only
the hard surface.

ligand keep
Continue to run calculations on the ligand structure used in the
previous DOCK task, rather than reading in a new one.

screen

noscore Don’t do the whole rough-score process here, be-
cause we did it in a previous task.

refine Use pose refinement.

maxref Maximum number of poses to keep after pose refine-
ment.

minimize Minimize the Coulomb+vdW interaction energy (interpolated on
the grids) for each ligand pose that survives through the rough-
score and refinement steps.

itmax Maximum number of conjugate-gradient iterations

dielco Dielectric coefficient. If cdiel appears in the
receptor subtask above, this is the dielectric
constant. If rdiel, the dielectric is this num-
ber multiplied by the interatomic distance in
Angstroms.

scoring Various filters for keeping poses after energy minimization.

ecvdw Reject any pose whose minimized Coul+vdW energy
is greater (in this case, less negative) than this num-
ber.

hbfilt Reject any pose for which the hydrogen-bond con-
tribution to GlideScore is greater than this number.

metalfilt
Reject any pose for which the metal-binding contri-
bution to GlideScore is greater than this number

hbpenal Assign this penalty in GlideScore for each buried
polar interaction.

report collect
After minimization, and in this case GlideScore evaluation, col-
lect data on top poses for final output. For a single ligand, this

90 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

could be combined with the report write subtask in the next
task. But for a loop over multiple ligands, collection is done
inside the loop for each ligand, and final output is done once at
the end of the job, outside the loop.

The fourth DOCK task writes the final output.

parameter clean final
Delete dynamically allocated arrays at the end of the task. The
final keyword insures that the Glide report function is executed
even if the last ligand’s structure was problematic.

report ... write filename ...
Write the best poses (up to nreport of them, but subject to
maxperlig and survival through all scoring filters) to the output
files. For filename base, write the receptor structure and the
ligand pose structures to base pv.mae, and a summary of the
poses and their scores to base.rept. The user can view the poses
on screen, in conjunction with the receptor, by using the Glide
Pose Viewer, available from the Maestro “Analysis” menu.

3.5.4 Example 3: Multiple Ligands, Flexible Docking

The above example treats a single conformation of a single ligand, to find the
most favorable pose for docking to the given receptor. Probably the more
common use of Glide is to determine which of a number of conformations,
or which ligand of a number of candidates, has the most favorable interac-
tion with the receptor. The DOCK task can be invoked repeatedly to handle
multiple input ligand structures, as in the loop shown below using the DICE
scripting language. (See Chapter 4 [Advanced Input Scripts], page 131 for
details of DICE.) We recommend using a loop as shown here, over multiple
ligands in a single file (Maestro or MDL SD format), with each structure a
different ligand, and using Impact’s internal conformation generator (sub-
task confgen) and torsional flexibility during grid-energy optimization (flex
keyword in minimize subtask) to sample the conformational space of each
ligand in turn.
After the example, we describe the ways in which this example differs from
the single-structure example above.

write file "1ets_example_mult.out" -

title "1ets_example_mult" *

PUT 0 INTO ’buildcheck’

PUT 1 INTO ’startlig’

PUT 0 INTO ’endlig’

PUT -1 INTO ’strucseq’

DOCK

Impact 5.5 Command Reference Manual 91



Chapter 3: Perform Simulations

smooth anneal 2

ligand multiple maxat 100 maxrot 15 -

ligvdwscale factor 1.000000 ccut 0.150000

receptor rdiel readf -

"1ets_single_grid"

screen readscreen -

"1ets_single_grid.save" -

greedy readgreed -

"1ets_single_grid_greedy.save" -

maxkeep 5000 scorecut 100.000000

parameter setup save maxconf 1000

final glidescore

report setup by glidescore nreport 500 -

external file -

"1ets_example_mult.ext" -

maxperlig 1 rmspose 0.500000 delpose 1.300000

run

QUIT

CREATE

build primary name lig type auto -

read sd file -

"many.mol" -

gotostruct 1

build types name lig

QUIT

DOCK

ligand reference name lig

screen noscore

parameter save

run

QUIT

PUT ’startlig’ INTO ’strucseq’

CREATE

build primary check name lig type auto -

read sd file -

"many.mol" -

gotostruct ’startlig’

build types name lig

QUIT

IF ’buildcheck’ LT 0

IF ’buildcheck’ EQ -1

PUT -

$"END OF LIGAND FILE:"$ -

INTO ’outmsg’

ENDIF

IF ’buildcheck’ EQ -2

PUT -

92 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

$"ERROR READING LIGAND FILE:"$ -

INTO ’outmsg’

ENDIF

SHOW ’outmsg’

PUT -

$"many.mol"$ -

INTO ’filemsg’

SHOW ’filemsg’

PUT $"No ligands read; aborting."$ INTO ’outmsg’

SHOW ’outmsg’

GOTO ABORT

ENDIF

PUT ’startlig’ INTO ’i’

WHILE (’endlig’ LT 1 OR ’i’ LE ’endlig’)

DOCK

ligand name lig

screen

parameter save

confgen name lig -

ecut 12.000000

run

QUIT

DOCK

smooth anneal 2

ligand keep

screen noscore refine maxref 400

parameter save

final glidescore read -

"1ets_single_grid.csc"

minimize flex itmax 100 dielco 2.000000

scoring ecvdw -25.000000 hbfilt -0.700000 metalfilt 0.000000 -

hbpenal 3.000000

report collect -

rmspose 0.500000 delpose 1.300000

run

QUIT

PUT ’i’ + 1 INTO ’strucseq’

CREATE

build primary check name lig type auto -

read sd file -

"many.mol" -

nextstruct

build types name lig

QUIT

IF ’buildcheck’ LT 0

IF ’buildcheck’ EQ -1

Impact 5.5 Command Reference Manual 93



Chapter 3: Perform Simulations

PUT -

$"END OF LIGAND FILE:"$ -

INTO ’outmsg’

ENDIF

IF ’buildcheck’ EQ -2

PUT -

$"ERROR READING LIGAND FILE:"$ -

INTO ’outmsg’

ENDIF

SHOW ’outmsg’

PUT -

$"many.mol"$ -

INTO ’filemsg’

SHOW ’filemsg’

PUT $"Proceeding with final processing of ligands."$ INTO ’outmsg’

SHOW ’outmsg’

GOTO BREAK

ENDIF

PUT ’i’ + 1 INTO ’i’

ENDWHILE

:BREAK

DOCK

parameter clean final

report -

rmspose 0.500000 delpose 1.300000 write filename -

"1ets_example_mult"

run

QUIT

:ABORT

END

The first thing to notice about this example is the initialization of four DICE
variables near the top. Of these, ’buildcheck’ is set in the Impact code
(as a result of the build primary check command), and ’strucseq’ is read
by Glide to determine a sequential ligand number that it both uses in its
internal bookkeeping and writes to output files. NOTE: the ’strucseq’ vari-
able must be present, and incremented as in PUT ’i’ + 1 INTO ’strucseq’
above, in any Glide job that docks ligands from more than one input struc-
ture, or if a reference ligand (see below) is present. Its omission in such cases
will cause the entire job to fail. ’startlig’ and ’endlig’ are set and used
only within the input file itself, to control the loop over ligands. In particu-
lar, PUT 0 INTO ’endlig’, combined with the subsequent WHILE command,
means loop until the end of the ligand structure file. By using different set-
tings for these variables, it is possible to run Glide for different segments
of a large multi-ligand database at different times (or at the same time on
different machines), without physically splitting up the file containing the

94 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

ligand structures. The script para_glide, in the $SCHRODINGER/utilities
directory, is useful for running such “parallel” Glide jobs.
The first (setup) DOCK task is almost identical to that in the previous, single-
ligand case. The order of the subtasks (ligand before receptor here, the
opposite order above) is irrelevant, both because the two subtasks are in-
dependent and because neither actually results in any action until the run
subtask. The larger values of maxconf and maxkeep in this case are the ones
we recommend for multiple ligands with internal conformation generation.
Another difference in this task is the presence of the external file spec-
ification in the report setup subtask. This indicates a file to which Glide
writes poses that pass all tests, in the order they are generated. Glide writes
its final output (see report write below) after processing this file to find
and sort the best nreport poses in the order requested. The glide_sort
script, in the $SCHRODINGER/utilities directory, is also available for post-
processing of this file according to different (user-selectable) criteria, and
sorting in order of different scoring functions, including customizable combi-
nations of various terms in GlideScore. Writing poses to an external file also
serves as a checkpointing facility. If a job is interrupted in the middle, the
data remain available in the external file for all ligands already docked. Note
that The external file sorting mechanism is not compatible with “rigid
docking” jobs such as the example in the previous section,2, or with “Score
in place” jobs (see below). For rigid docking jobs (or confgen jobs if the
external file specification is omitted), the poses that pass are stored and
sorted in program memory instead. For “Score in place,” only the single
input pose is treated, so saving, sorting, and structural reporting are not
relevant.
This example also differs from the previous one by the presence of a refer-
ence ligand. This is useful in cases where one of the ligands to be docked
is a known binder to the receptor, with a co-crystallized structure available.
That is not actually the case here, but we specify a reference ligand anyway,
just to illustrate the syntax. ligand reference name lig indicates that the
structure just read into species lig is the reference structure: if the first
ligand actually docked is the same molecule as this structure (as determined
by build primary check below), the output will include RMS deviations of
its docked pose(s) from this reference structure. screen noscore indicates
that no actual docking calculations are to be done on this reference struc-
ture in this task; just its input coordinates are stored for subsequent RMS
comparisons.
Like the first one, the subsequent DOCK tasks here are also very similar to
those in the previous example. The differences are the increase in maxref
to the number recommended for a multiple-ligand job; the presence of the

2 Actually, external file would work with that specific example, because there is only one
input ligand structure. But it doesn’t work in general.

Impact 5.5 Command Reference Manual 95



Chapter 3: Perform Simulations

confgen subtask in the rough-scoring task, which invokes Impact’s internal
conformation generator; and the keyword flex in the minimize subtask,
which enables ligand torsional flexibility during the grid-energy minimiza-
tion. The execution of the task is changed by confgen, however, in that for
each ligand structure read in, Glide loops over the conformations it gener-
ates. The specifications appearing in this confgen subtask have the following
meanings:

name lig Generate conformations for the indicated species.

ecut Reject any conformation whose internal energy (torsional and
1-4 vdW terms only) is more than the specified amount (in
kcal/mol) higher than that of the best (lowest-energy) confor-
mation generated.

Other than the implicit loops over conformations generated by confgen,
the main differences in the Glide procedure between this example and the
previous one come from the nature of the input (ligand) structure file and
the CREATE tasks that read it, and more important, from the DICE loop
itself, and other control structures.

build primary check
Before storing the structure (and other actions normally invoked
by build primary in a CREATE task), check whether it is the
same molecule as the one previously read. For this purpose,
two structures are considered to be the same molecule if they
contain the same atom types (to the extent that atom type is
encoded in the file), with the same connectivity, listed in the
same order. If they do, Impact does not need to repeat the
atomtyping procedure, or to reset other parameters. (Note: if
there were no reference ligand, this would be the first structure
read into the ligand species, so build primary check and the
subsequent parsing of ’buildcheck’ would not be needed here.
They would still be needed inside the loop, as described below.)
The result of build primary check is encoded in the value of
the DICE variable ’buildcheck’. The possible values are:

1 Structures are the same molecule

2 Structures are different molecules

-1 End of file (no “next structure” to read)

-2 Error reading next structure

IF ’buildcheck’ LT 0
If we hit end of file or error on reading the first ligand to be
docked, we must exit the program.
The PUT and SHOW commands here are simply to provide informa-
tive output. Note that SHOW writes only to the “main output” file

96 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

(1ets_example_mult.out as specified in the write file com-
mand at the top), not to Standard Output (or the .log file to
which it is redirected).

GOTO ABORT
Jump to the label :ABORT, which is at the end of the command
file.

gotostruct ’startlig’
As noted above, many.mol is a multi-structure file in MDL’s SD
format. (Analogous syntax, with read maestro file, would be
used to read such a file in Schrödinger’s Maestro format.)3 The
keyword-value pair gotostruct n calls for reading from the nth
structure in the file, where in this case n is the value of the DICE
variable ’startlig’, which we set to 1 at the top of this input
file. Thus if we wanted to start at ligand 3001, the command at
the top would be PUT 3001 INTO ’startlig.

PUT ’startlig’ INTO ’i’
Initialize the loop index.

WHILE (’endlig’ LT 1 OR ’i’ LE ’endlig’)
The loop control. If ’endlig’ is less than 1 (as it is set at
the top), this is nominally an infinite loop. Fortunately, DICE
provides a way of breaking out of such a loop, which we will
do in case of end of file or unrecoverable error (see GOTO BREAK
below). If ’endlig’ were 1 or greater, it would set a limit on
the number of times through the loop (and thus the number of
ligand structures to process), even if that meant exiting before
end of file. Thus to run only through ligand 1000 (if there are
that many), change the command at the top to PUT 1000 INTO
’endlig’.

nextstruct
Read the next structure in the file.

IF ’buildcheck’ LT 0
This is the crucial control structure. We need to break out of
the loop if we have encountered the end of the file or an error.
The PUT and SHOW commands are as above (except for details of
the messages), but the target of the GOTO is not.

GOTO BREAK
Jump to the label :BREAK, which is outside the loop.

3 For PDB format, Glide reads single-structure files, one per ligand (or input conformation,
if confgen is not used). In this case, the Impact input file would have to include commands
for storing the names of these files in a list, and the CREATE task in the loop would read
the file whose name is the element of this list given by the loop index.

Impact 5.5 Command Reference Manual 97



Chapter 3: Perform Simulations

PUT ’i’ + 1 INTO ’i’
Increment the loop index.

ENDWHILE End of the loop.

The final output of this job consists of the structure file 1ets_example_
mult_pv.mae, and the report file 1ets_example_mult.rept, which follows.
In the actual files on disk, all the columns are one one long row, to enable you
to load them into a spreadsheet. They are printed here in separate sections
for space reasons.

REPORT OF BEST 5 POSES

The receptor and sorted ligand structures written to the file

1ets_example_mult_pv.mae for use in the Pose Viewer

Rank Title Lig# Conf# Pose# Score GScore E(Cvdw) Eintern Emodel

==== ============ ==== ===== ===== ===== ====== ======= ======= ======

1 Lorazepam 5 2 112 -6.47 -6.47 -31.9 0.6 -45.3

2 indomethacin 4 4 84 -6.24 -6.24 -35.0 8.5 -47.2

3 Atropine 1 3 16 -5.42 -5.42 -38.8 2.1 -57.1

4 Ibuprofen 3 24 151 -5.37 -5.37 -27.3 1.8 -42.2

5 Diflucan 2 340 24 -3.61 -3.61 -34.4 4.9 -42.3

Ehbond Emetal Eclash E(Coul) E(vdW) RMSD

====== ====== ====== ======= ====== ======

-1.9 0.0 0.0 -2.5 -29.3 --

-1.9 0.0 0.0 -6.5 -28.5 --

-1.4 0.0 0.0 -9.6 -29.1 61.597

-1.5 0.0 0.0 -4.9 -22.4 --

-1.1 0.0 0.0 -5.3 -29.1 --

GlideScore (GScore) is the sum of a constant = -1.0, plus other

contributions including the following:

EHbond: Hydrogen-bonding term

Emetal: Metal-binding term

Eclash: Penalty for steric clashes

(GScore = 10000.0 indicates that a given ligand pose failed one

or more criteria for computing GScore. Depending on which ones

it failed, the components of GScore may not be valid either.)

ECvdW is the non-bonded interaction energy (Coulomb plus

van der Waals) between the ligand and the receptor.

Emodel is a specific combination of GScore, ECvdW, and Eint,

which is the internal torsional energy of the ligand conformer.

As requested with maxperlig 1, this file contains information on one struc-
ture per ligand. For comparison of different ligands, the structures are sorted
in order of increasing GlideScore (GScore), with the “best” ligand at the top.
In choosing the best pose (or the best maxperlig poses) within the set of fi-
nal structures for a single ligand, however, Glide uses the Emodel score rather

98 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

than GlideScore. Emodel is a weighted average of the GlideScore function
and the Coulomb+vdW interaction energy (ECvdW) for a given pose, and
is better suited than GlideScore for comparing poses of a single ligand.
For each pose, the report file lists its rank in GlideScore order, the ligand “ti-
tle” taken from the input structure file, and the ligand number in the order
the ligands were read in. (This includes any skipped ligands. For instance, if
ligand #5, Lorazepam, were not processed for some reason, but processing
of other ligands continued after it, then progesterone would still be listed
as ligand #6.) It also gives conformation and pose numbers according to
Glide’s internal ordering, which are useful for distinguishing different struc-
tures of the same ligand (when maxperlig > 1). The subsequent columns
include GlideScore, Emodel, various components of these, and if a reference
structure was specified and the first ligand (in the order they were read
in) is the same molecule as the reference, the heavy-atom RMS deviation (in
Angstroms) of poses of that ligand from the reference structure. (The RMSD
here includes the effects of translation and rigid rotation of the ligand, not
just conformational differences. The high RMSD value in this case occurs
because the reference ligand in this case was the input structure of the first
docked ligand, which in fact is not a cocrystallized ligand for this receptor.)
For other molecules (or if there was no reference structure), -- appears in
the RMSD column. The “Score” column in the above table is the same
as GlideScore because by default, Glide ranks poses according to this scor-
ing function. By specifying by energy in the report setup command, or
by using the glide_sort post-processing script with appropriate flags, the
user may choose to sort on some other score such as ECvdW (by energy),
or some custom combination of various terms in the table (glide_sort).
The “Score” column will always contain the value of the function by which
the poses are ranked. If the keyword-value pair verbosity 2 (or greater)
appears in a parameter subtask before (or in the same DOCK task as) the
report write command, the report file shows the ligand center coordinates
and Euler angles of each pose, instead of some of the score components.
GlideScore values of 10000.0 indicate that GlideScore was in fact not calcu-
lated for a given pose. This occurs when the pose fails one (or more) of the
criteria specified in the scoring subtask.

3.5.5 Example 4: Scoring in Place

In addition to searching for the best conformation and pose of one or more
ligands, Glide can also evaluate its scoring functions on an input struc-
ture. To request this scoring in place feature, use the keyword singlep (for
“single-point” energy or scoring) in the ligand subtask of a DOCK task after
the setup. If this appears in a loop, scoring in place will be done for each
input structure read in the loop. Note in the following input file that the
DOCK tasks for rough-score screening and energy minimization are combined
into one; but no screening or minimization actually takes place. As noted

Impact 5.5 Command Reference Manual 99



Chapter 3: Perform Simulations

above, the external file keywords cannot be used in the report setup
subtask for such a job. Glide does not currently report an error if they are
used (because they may occur in a separate DOCK task from the singlep
keyword), but the job will not run correctly if they are present.

write file "1ets_single_inplace.out" -

title "1ets_single_inplace" *

PUT 0 INTO ’buildcheck’

PUT 1 INTO ’startlig’

PUT 0 INTO ’endlig’

PUT -1 INTO ’strucseq’

DOCK

smooth anneal 2

ligand multiple maxat 100 maxrot 15 -

ligvdwscale factor 1.000000 ccut 0.150000

receptor rdiel readf -

"1ets_single_grid"

screen readscreen -

"1ets_single_grid.save" -

greedy readgreed -

"1ets_single_grid_greedy.save" -

maxkeep 1000 scorecut 100.000000

parameter setup save maxconf 1

final glidescore

report setup by glidescore nreport 500 -

maxperlig 1 rmspose 0.500000 delpose 1.300000

run

QUIT

PUT 0 INTO ’strucseq’

CREATE

build primary name lig type auto read maestro file -

"1ets_single_inplace.mae" -

tag LIG_ gotostruct 1

build types name lig

QUIT

DOCK

smooth anneal 2

ligand name lig singlep

screen noscore refine maxref 100

parameter save

final glidescore read -

"1ets_single_grid.csc"

minimize itmax 100 dielco 2.000000

scoring ecvdw -25.000000 hbfilt -0.700000 metalfilt 0.000000 -

hbpenal 3.000000

report collect -

rmspose 0.500000 delpose 1.300000

100 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

run

QUIT

DOCK

parameter clean final

report -

rmspose 0.500000 delpose 1.300000 write filename -

"1ets_single_inplace"

run

QUIT

END

The output of a score-in-place job is written to a .scor file, in this case
1ets_single_inplace.scor. This file gives the components of GlideScore
and ECvdW for each input ligand (in this case only one). There is no
structural output file (like the _pv.mae files in previous examples), because
the structure is the same as in the input file.

-----------------------------------------------------------------------------

Lig # Title GScore HBond Metal Lipo RotB Clash BuryP ECvdW ECoul EvdW

1 -11.40 -4.55 0.00 -6.58 0.73 0.00 0.00 -70.01 -19.98 -50.03

-----------------------------------------------------------------------------

GlideScore (GScore) is the sum of a constant = -1.0, plus the

following contributions:

HBond: Hydrogen-bonding term

Metal: Metal-binding term

Lipo: Lipophilic contact term

RotB: Penalty for freezing rotatable bonds

Clash: Penalty for steric clashes

BuryP: Penalty for buried polar groups

(GScore = 10000.0 indicates that a given ligand pose failed one

or more criteria for computing GScore. Depending on which ones

it failed, the components of GScore may not be valid either.)

ECvdW is the non-bonded interaction energy (Coulomb plus

van der Waals) between the ligand and the receptor.

3.5.6 Example 5: Glide Constraints

Glide constraints are requirements that docked ligands have specific inter-
actions with the receptor. During grid generation, you can define up to ten
constraints in the receptor, each of which may be a polar hydrogen atom,
hydrogen-bond acceptor, or metal ion (atom-based constraint); a hydropho-
bic region on and near the receptor surface (hydrophobic constraint); or the
spherical region within a specified distance of a specified point (positional
constraint). For atom-based constraints, if you specify a receptor atom that

Impact 5.5 Command Reference Manual 101



Chapter 3: Perform Simulations

is part of a functional group, and has a structural symmetry with one or
more other atoms of the same chemical type in the group, then Glide will
automatically include the symmetry-related atoms as part of the same con-
straint specification, and will consider a ligand interaction with any one of
them as satisfying the constraint.
During ligand docking, you can specify that ligand poses must have appro-
priate atoms in appropriate positions relative to up to four of these receptor
constraint sites, in order to be considered for docking. The categories of lig-
and atoms that qualify to satisfy each constraint are specified by SMARTS
patterns in a feature file, which allows both restriction within and flexibil-
ity beyond the atom types normally considered as participating in hydro-
gen bonding, metal ligation, etc. For each hydrophobic constraint that you
choose to enforce, you can specify the minimum number of ligand hydropho-
bic heavy atoms (default 1) that must lie in the corresponding hydrophobic
region around the receptor in order to satisfy the constraint.
Because Glide incorporates any constraint specifications in several of its hi-
erarchical filters (and incurs little additional computational cost in doing
so), using constraints can accelerate docking calculations. This occurs be-
cause large regions of pose space can be quickly eliminated (as well as entire
ligands that don’t have the right kind of atoms to satisfy the constraints),
beyond what a given Glide filter would eliminate without the constraints.
In addition, by eliminating “false positive” ligands or poses, constraints can
improve enrichment factors in database screening. And by restricting the al-
lowed binding modes, judiciously chosen constraints may also improve dock-
ing accuracy.
As the following two examples demonstrate, you must specify constraints in
the receptor subtask of the initial DOCK task, in both the grid generation and
ligand docking jobs. The grid generation job needs to know which receptor
atoms or regions you want to require ligand atoms to interact with. In
addition, because hydrophobic constraints are not associated with individual
atoms, a grid generation job needs to read a file containing a description of
the hydrophobic regions (a list of the grid cells included in each region) that
define such constraints. The name of this file must be supplied explicitly
in the main input file; the Maestro interface calls the file base.phob, where
base is the “base name” specified with the readf and writef keywords.
For a positional constraint, you must specify the Cartesian coordinates of a
position, and the radius of the sphere around that position in which one or
more ligand atoms must lie to satisfy the constraint. The grid generation
job extracts or calculates information about the receptor atoms that define
hydrogen-bond and metal constraints (such as their types and locations)
that the docking job will use in enforcing the constraints, and writes the
information to a file (default name base.cons), along with the grid cell lists
it gets from the base.phob file for hydrophobic constraints, and those it
calculates from the sphere centers and radii for positional constraints. The

102 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

docking job needs to know that it must read the constraint definition file that
the grid generation job wrote, and which of the constraints defined therein
it must enforce.

DOCK

smooth anneal 2

receptor rdiel name recep -

constraints ncons 4 nphobic 2 file "1kv2_grid.phob" -

consatom 1065 -

consatom 2531 -

writef "1kv2_grid" writerdiel -

protvdwscale factor 1.000000 ccut 0.250000 -

box center read xcent 4.700036 ycent 15.307946 zcent 33.614067 -

boxxrange 29.622122 boxyrange 29.622122 boxzrange 29.622122 -

actxrange 29.622122 actyrange 29.622122 actzrange 29.622122

screen greedy -

box center read xcent 4.700036 ycent 15.307946 zcent 33.614067 -

ligxrange 10.000000 ligyrange 10.000000 ligzrange 10.000000 -

writescreen "1kv2_grid.save" -

writegreed "1kv2_grid_greedy.save" -

maxkeep 5000 scorecut 100.000000

parameter clean

final glidescore

run

QUIT

In this grid generation job, we define four constraints (ncons 4) in the protein
kinase P38 (Protein Data Bank entry 1KV2). Two of the constraints are
hydrophobic (nphobic 2), and the hydrophobic regions of interest are in
the file 1kv2_grid.phob, which the Maestro interface wrote (based on a
calculation of a hydrophobic surface for the protein, and user selection of
desired grid cells) in setting up the job. In this case, the regions correspond
to the locations of naphthalene and tert-butyl moieties of the cocrystallized
ligand in the 1KV2 structure. The other two constraints (the number is not
explicitly listed, but obviously equal to the difference between the ncons
and nphobic values) are either hydrogen bonds or metal ions, in either case
defined by single protein atoms (and symmetry-equivalent ones, if any). We
list each of these atoms (consatom) by its atom index in the input structure.
In this case, the atoms are the side-chain (carboxylate) oxygen(s) of residue
GLU 71 and the backbone (amide) hydrogen of ASP 168; the cocrystallized
ligand in the 1KV2 structure makes hydrogen bonds to both of these atoms,
though not all known active ligands do.
In a ligand docking job, you may specify up to four of the constraints defined
in the previous gridgen job, for Glide to enforce when docking ligands. The
listing of which constraints are eligible for enforcement, and the specification
of how many of those eligible are required to be satisfied, are contained in
the feature file, along with the specification for each listed constraint of
SMARTS patterns that ligand atoms must match in order to satisfy that
constraint.

Impact 5.5 Command Reference Manual 103



Chapter 3: Perform Simulations

In the excerpt shown below from a ligand docking job, the receptor subtask
indicates that we want to apply constraints set up in a prior grid generation
job. The feature file 1kv2_dock_1cons.feat might list any number of the
previously defined constraints (and SMARTS patterns to match ligand atoms
that can satisfy them), but specify that only some smaller number of them is
required to be satisfied. For instance, if it lists three constraints and specifies
that one is required, then ligands and poses that satisfy any one of those
three constraints may appear in the output. If the grid generation job defined
ten constraints, then the feature file can in principle list all ten, but cannot
specify a number greater than four as the satisfaction requirement. For a
given set of grid files, different docking jobs will in general have different
feature files associated with them.
The keywords restcoef and restexp give parameters of a restraining po-
tential that Glide uses to enforce the constraints during grid-energy opti-
mization. This potential is a Gaussian function of the distance r between
a polar hydrogen and a hydrogen-bond acceptor, or a metal ion and its co-
ordinating atom in the ligand, centered at the equilibrium distance for the
given interaction:

V (r) = −A exp
[
−b (r − r0)

2
]

where r0 is the equilibrium distance, 1.85Å for a hydrogen bond or 2.11Å
for a metal-ligand interaction. The default values for the coefficients A and
b are those shown below for restcoef and restexp: A = 30.0kcal/mol and
b = 0.3Å −2. These values of the parameters have yielded good results in our
simulations, but we do not claim that they are the only reasonable values.

DOCK

...

receptor rdiel readf -

"1kv2_grid" -

constraints loosedock 2 featurefile -

"1kv2_dock_1cons.feat" -

consname -

"1kv2_grid.cons" -

restcoef 30.0 restexp 0.3

...

QUIT

3.5.7 Subtask Smooth

Request smoothing of energy functions used in constructing grids.
• smooth [cwall val] [csoft val] [vsoft val]

[anneal [1|2]]

104 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

cwall, csoft
Smoothing parameters for Coulomb energy.

vsoft Smoothing parameter for Lennard-Jones energy.

anneal Controls minimization on smoothed and/or unsmoothed energy
surface.

Both smoothing functions work by evaluating the standard energy functions
for two atoms at an effective distance that is positive when the actual dis-
tance between the atoms is zero. For the Coulomb energy, the effective
distance at an actual distance d is given by

ceff = sqrt[d * d + cwall * cwall * exp( - (d * d) / csoft)],

and for the Lennard-Jones energy, by
veff = d + vwall * exp( - (d * d) / vsoft).

(Note that in each case, the wall parameter is the value of the effective
radius at d = 0, and the soft parameter determines how rapidly the function
reverts to its unsmoothed value as d increases, with a larger parameter giving
a slower (or “softer”) transition.)
Note that vwall is not user-specifiable. Instead, for the contribution of a
given protein atom, Glide uses half of the Lennard-Jones σ parameter for
that atom. The default values for the other parameters are cwall = 2.0 Å,
and csoft = vsoft = 4.0 Å2. All of the parameters must be positive num-
bers; if the user specifies any negative, all are ignored, a warning is issued,
and smoothing is not performed. In addition, if the softness parameters are
below certain lower bounds, the resulting smoothed potential will have a
local maximum (for a repulsive potential) at some positive distance, and a
spurious minimum rather than a maximum at zero distance. For Coulomb
smoothing, the lower bound is csoft = cwall * cwall. For Lennard-Jones,
since vwall varies with the protein atom type, we use a lower bound large
enough to accommodate the largest σ/2 in paramstd.dat (3.358 Å for the
Cs+ ion, which gives a lower bound of vsoft = 2.075 Å2). If the user spec-
ifies a softness lower than the applicable lower bound, a warning is issued
and the parameter is reset to equal the lower bound.
With the smoothing functions, Glide offers the option of annealing during
grid-energy minimization. This involves starting the minimization on the
potential-energy surface defined by the smoothed functions, and gradually
shifting to the unsmoothed functions. The advantage of this procedure is to
allow exploration of more regions of ligand pose and conformational space
early in the process (because the smoothed functions have lower barriers),
while still ending at a minimum of the original grid potential rather than
at a pose whose energy is made artificially low by smoothing. Specifying
smooth anneal 2 when calculating grids will result in both smoothed and
unsmoothed functions being calculated (and saved to disk); the same specifi-
cation in the task where minimization is done will result in annealing during
minimization. Smooth anneal 1 means calculate, save, and/or minimize on

Impact 5.5 Command Reference Manual 105



Chapter 3: Perform Simulations

only the smoothed surface. To calculate or minimize on only the unsmoothed
potentials, omit the smooth subtask entirely. We strongly recommend using
smooth anneal 2 in all cases.

3.5.8 Subtask Receptor

Specify receptor molecule(s) and active site.
• receptor [writef writebase] [readf readbase] -

[cdiel | rdiel | nil] -

[writecdie | writerdie | nil] -

[name spec [mole [mol | all]] -

[constraints [ncons num_cons -

[nphobic num_phob file fname] -

[nposit num_posit (xpos val ypos val zpos val -

rpos val constitle cons) repeated num posit times] -

(consatom num constitle cons) -

repeated (num cons − num phob − num posit) times] -

[consname file] [restcoef val][restexp val] -

[metalbind [charged | neutral | any]] -

[featurefile fname [featverb num] | -

nusecons num_ucons [nusephob num_uphob -

(usephob num nfill num) repeated num uphob times] -

(usecons num) repeated (num ucons − num uphob) times] -

[loosegrid num] [loosedock num] [finalonly]] -

[bsize size] [nlev nlevels] -

[(scut val) repeated nlevels-1 times] -

[box center read xcent val ycent val zcent val -

boxxr val boxyr val boxzr val -

actxr val actyr val actzr val] -

[active nsec num_sections -

(fres num lres num) repeated num sections times -

[buffer val]] [readsurface file] [writesurface file]

writef
readf Write/read energy grids (or fields) to/from disk files. writef

writes adaptive grid structure information to writebase.grd,
Coulomb potential (constant dielectric) to writebase coul.fld,
Coulomb potential (linear dielectric) to writebase coul2.fld, and
Lennard-Jones grids to writebase vdw.fld. readf reads the files
if they exist, and calculates the energy grids from scratch if they
don’t (and there is a receptor structure specified with the name
keyword). At least one of readf and writef should always be
specified. If both are specified, Impact reads whatever files are
present, and calculates and writes those that aren’t. (If read-
base and writebase are different, Impact reads from the former
and writes to the latter.) The files specified by readf should of
course have previously been written as a result of a writef in a
previous docking task.

106 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

cdiel
rdiel Specifies whether the Coulomb energy should be calculated as-

suming a constant dielectric (cdiel) or a dielectric linear in
the interatomic distance (rdiel). If neither is specified, the
default is to use the constant dielectric. If both cdiel and
rdiel are specified, rdiel wins, i.e., the linear dielectric is used.
We recommend rdiel (and dielco 2.0 in the minimize sub-
task), to account, however roughly, for solvent effects. Note
that these keywords affect which grid file is read, not the orig-
inal calculation and writing of the grids, which is controlled by
writecdie/writerdie.

writecdie
writerdie

Specifies whether Coulomb grids are written to disk for the con-
stant (writecdie) or linear distance-dependent (writerdie) di-
electric model. If neither is specified, both grids are written. (If
both are specified, the one that comes last wins.) Because grid
files are large and we recommend always using the linear dielec-
tric, we also recommend using writerdie to save disk space.

name
mole Specifies the Impact species that includes the receptor

molecule(s). If the species contains more than one molecule
(apart from bound solvent), then the mole keyword is required,
with either the name (mol) of a single molecule, or all to
indicate all molecules in the species are included.

constraints
Require ligand poses to make specified interactions with the re-
ceptor. As noted above (see Section 3.5.6 [Constraints (Dock-
ing)], page 101), the constraints keyword must appear in both
grid generation and ligand docking jobs in order for constraints
to be used. The appearance of the following keywords depends
on the type of job.

ncons This keyword appears in grid generation jobs, and
the value gives the total number of constraints (of
all types combined) defined.

nphobic num file fname
The value num gives the number of hydrophobic
constraints defined in a grid generation job. The
file fname contains lists of grid cells near the recep-
tor that constitute the hydrophobic region for each
such constraint.

Impact 5.5 Command Reference Manual 107



Chapter 3: Perform Simulations

nposit
xpos
ypos
zpos
rpos Specification of positional constraints, which are re-

quirements that a ligand atom (whose desired chem-
ical characteristics will be defined in the ligand dock-
ing job) occupy a specifed (generally small) region
of space. The nposit value gives the number of such
constraints, each of which is defined as a spherical
region centered at the Cartesian coordinates given
by (xpos,ypos,zpos), with radius rpos.

consatom For each atom-based (H-bond or metal) constraint
defined in a grid generation job, this specification
lists the index of the constraint atom (or one of a set
of symmetry-equivalent atoms) in the input receptor
structure file.

constitle
An ASCII label for each constraint. This is specified
in the Glide input file for positional and atom-based
constraints only. For hydrophobic constraints, Glide
reads the title from the file listed with nphobic.

consname This may appear in either grid generation or ligand
docking jobs. It specifies an alternative file name for
writing or reading information about the receptor
constraint atoms. The default is writefbase.cons
or readfbase.cons, whichever is present in the same
receptor subtask.

restcoef
restexp These may be specified in a ligand docking job.

They are the depth (multiplicative coefficient, with-
out the negative sign) and inverse square half-width
(coefficient of the exponent) in a Gaussian potential
function added to enforce the constraints during en-
ergy minimization. For the form of the potential,
See Section 3.5.6 [Constraints (Docking)], page 101.

featurefile
Gives the name of a “feature” file, which specifies
which constraints must be satisfied in a ligand dock-
ing job (including optional as well as required con-
straints, in one or more groups with a “number re-
quired” specified for each group). In addition to
listing the constraints (by title and index in the

108 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

consname file that the grid generation job wrote),
this file specifies what type of ligand atoms (those
matching listed SMARTS patterns) will be accepted
as matching each constraint.

featverb This number is a “verbosity” parameter used by
the portions of Glide that read the feature file, and
match ligand atoms against SMARTS patterns. The
default, equivalent to featverb 1, prints very little
information about the file and the matches, whereas
featverb 4 gives a complete listing of which con-
straints and patterns are listed in the file, and which
patterns are matched by each ligand to be docked.

loosegrid
Increase the distance tolerance (by num Å) for con-
sidering grid cells to be appropriate locations for
constraint-satisfying ligand atoms. Used in grid
generation jobs only, not docking, and affects only
atom-based (H-bond and metal) and positional con-
straints, not hydrophobic. (The qualifying grid cells
for hydrophobic constraints are always considered
to be those stored in the file associated with the
nphobic keyword, no more and no less.) Default,
or loosegrid 0, is to use the distance tolerances
built into the algorithm for calculating the grid cells.
Looser criteria may improve pose recovery (i.e., in-
crease the likelihood of finding constraint-satisfying
poses for active ligands), possibly at the cost of a
decrease in computational speed.

loosedock
Increase the tolerances (by num Å) for distance
matches used to determine constraint satisfaction
during the rough-score stage of the Glide funnel.
Used in ligand docking jobs only. Default, or
loosedock 0, is to use the distance tolerances
built into the constraint algorithm. Looser
criteria may increase the likelihood of finding
constraint-satisfying poses for active ligands,
possibly at the cost of a decrease in computational
speed.

finalonly
With this keyword, used in ligand docking jobs only,
constraints are used only at the beginning of the
docking run to filter out ligands that lack appropri-

Impact 5.5 Command Reference Manual 109



Chapter 3: Perform Simulations

ate atoms to satisfy the constraints, and at the end
to filter out final poses that do not satisfy them, not
at any intermediate stages of the Glide funnel. The
output poses from a constraints finalonly run,
for each ligand that contains appropriate atoms,
are the best (by Emodel score) constraint-satisfying
poses of that ligand that would have emerged from
an unconstrained docking job.

metalbind [DEPRECATED]
This may appear in a ligand docking job. It speci-
fies that any ligand atom that satisfies a constraint
to bind a metal ion in the receptor must bear a
nonzero formal charge (charged), must bear zero
formal charge (neutral), or may be in any formal
charge state (any). The default, and the recom-
mended value, is charged.

nusecons [DEPRECATED]
This and the following keywords may appear in a
ligand docking job, to select constraints to enforce
from among those defined in the consname file that
the grid generation job wrote. The nusecons value
gives the total number of constraints to enforce, of
all types.

nusephob [DEPRECATED]
This gives the total number of hydrophobic con-
straints to enforce.

usephob [DEPRECATED]
nfill [DEPRECATED]

For each selected hydrophobic constraint, the
usephob value gives its position in the consname
file, and nfill the number of ligand hydrophobic
heavy atoms that must be located in the
corresponding hydrophobic region.

usecons [DEPRECATED]
These values are the positions of the selected non-
hydrophobic constraints in the consname file. Note
that hydrophobic constraints are listed first in this
file, so if there are two hydrophobic constraints,
the “first” non-hydrophobic one is selected using
usecons 3.

bsize The size of the finest grid spacing for the energy grids, in
Angstroms. Default 0.4.

110 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

nlev Number of levels of the adaptive grid. At each successive level
(farther from the receptor surface), the grid spacing is twice
what it is at the previous level. Thus if the smallest grid spacing
is size, then the largest is 2(nlevels−1) * size. Default nlevels = 4.

scut Distances from the receptor (the closest receptor surface point)
at which the grid spacing changes. Thus

bsize 0.4 nlev 2 scut 1.0

means that the grid spacing is 0.4 Å for points closer than 1.0 Å
from the receptor surface, and 0.8 Å farther away. If there is
more than one scut value (i.e., if nlevels > 2), they must be
given in descending order. The default (corresponding to bsize
0.4 nlev 4) is scut 4.4 scut 2.8 scut 2.0.

box Explicitly specify the rectangular box in which the energy grid
is defined, rather than building it based on a specification of
active site residues.
center read

Gives the three Cartesian coordinates of the cen-
ter of the box, as the the numbers following xcent,
ycent, and zcent. The keyword read is required
here because another option is available with the
center keyword in the screen subtask, and the
same code is used to parse the box input in both
subtasks.

boxxr
boxyr
boxzr The size of the grid box (in Angstroms) in the x,

y, and z directions. That is, the x-coordinates of
the grid points in the box range from approximately
xcent − boxxr/2 to xcent + boxxr/2. This is ap-
proximate because extra space may be added to the
ends of the box so that it contains a whole number
of elementary cubes of the grid.

actxr
actyr
actzr Dimensions (Angstroms) of the box used to deter-

mine “active” residues whose surface is used in early
rough-score filters. Surface points are calculated for
all residues that have any atom in this box. In gen-
eral this should be the same size as the grid box, but
memory limitations in the surface-generation algo-
rithm require a box no larger than 50 Å on a side.

active An alternative method of defining the dimensions of the grid
and “active surface” boxes. Specifies which residues are to be

Impact 5.5 Command Reference Manual 111



Chapter 3: Perform Simulations

considered the active site of the receptor. The grid box is com-
puted using the largest and smallest x-, y-, and z-coordinates of
atoms in these residues, and adding a distance in each direction
(positive and negative) as specified with the buffer keyword.
As when directly specifying actxr, etc., surface points are actu-
ally generated for all residues with any atom in the box, not just
the ones specified here. The initial active residues are specified
as num sections ranges, each given by a fres lres pair. Each
fres value must be greater than the previous lres (the first
must be greater than zero), and each lres must be greater than
or equal to the corresponding fres (with equality implying a
range consisting of a single residue). The maximum value of
num sections is 100. (If you need more than that, consider fill-
ing in to combine several ranges into one.) If neither active nor
box is present, then all residues of the receptor are considered
to be in the active site, with a buffer of the default size, 11.0
Angstroms.

nsec Indicates that the active site residues are given by the following
fres num1 lres num2 pairs, where each of the num sections
pairs indicates that all residues in the range num1 through
num2, inclusive, are part of the active site. (Note that such
a “range” may consist of a single residue, as fres 79 lres 79.)

buffer Indicates that the box in which the grids are defined extends a
distance bufval Angstroms beyond the minimal box that encloses
the active site, in each of the positive and negative x, y, and z
directions. Default is 11.0.

readsurface
writesurface

Read/write receptor surface points from/to the indicated file.
The surface points are calculated from the positions and radii of
receptor atoms in residues contained in the “active” box defined
by either actxr, etc., or active, and are used in early filters
in the rough-score screening step. The surface calculation is
somewhat time-consuming, so it may be convenient to store the
points for future use, particularly in runs where the energy grids
are not being recalculated (which takes a much longer time) but
the rough-score grids are (which is quite fast, so recalculating
the surface can add significantly to it).

3.5.9 Subtask Ligand

Specify ligand molecule.
• ligand keep

• ligand multiple maxat nat [maxrot nbond] -

112 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

[amideoff]

• ligand name spec [mole mol] -

[init [zero | rand [randopts] | read posespec] -

[cminit [zero | box | lig | grid gridspec] -

[reference] [noelec] [[stdrot | norot]] -

[multiple maxat nat maxmol nmol] -

[new]

keep Indicates that no new parameters or coordinates are to be read
in for the ligand, but that there is still a ligand present. The
docking calculation will not run correctly if there is no ligand
subtask present, so ligand keep is required in invocations of
the DOCK task that do not introduce a new ligand conformation,
as in a pose refinement and energy minimization step after a
rough-score screening task (possibly in a loop over externally
generated conformers) for the same ligand. If the keep keyword
appears in a ligand subtask, all other keywords in that subtask
are ignored.

multiple The keyword multiple is used here for historical reasons. It
should really be called ligand size, because it is necessary
even in single-ligand jobs that contain a “setup” DOCK task that
doesn’t dock (or otherwise specify) any specific ligand. For such
a single-ligand job, maxat and maxrot should give the number of
atoms and rotatable bonds in that ligand. For multiple-ligand
jobs, they give bounds on the size of ligands that will be consid-
ered, that is, input ligands with more atoms or rotatable bonds
will be skipped. The defaults are maxat 100 maxrot 35, and the
maximum allowed value for maxat is 200.
The multiple keyword must appear in the ligand subtask of
the first DOCK task of an Impact input file.

amideoff In Glide standard precision (SP) and high throughput virtual
screening (HTVS) jobs, the amideoff keyword indicates that
amide bonds should not be considered rotatable. By default,
they are rotatable.
In Glide extra precision (XP) jobs, the amideoff keyword in-
stead applies a 3.5 kcal/mol penalty on cis-amide conformations
and a maximum penalty of 6.0 kcal/mol for 90 degree twisted
amide conformations, with interpolated penalties in between.

name The name of the species in which the ligand molecule is to be
found.

mole The name of the ligand molecule within species spec. Note that
Glide can only handle single molecules (as defined in the create
task) as ligands, so if spec contains more than one molecule,
mole mol is required.

Impact 5.5 Command Reference Manual 113



Chapter 3: Perform Simulations

reference
Specifies that the current ligand molecule (the one most re-
cently read in to the specified species) is to be taken as the
reference conformation for root-mean-square deviation (rmsd)
calculations. Such calculations are only meaningful, and Glide
only does them, for ligands that are the same molecule as the
reference. Glide also issues a warning that rmsd calculations
may not be meaningful for a multiple-ligand job, but the rmsds
it does calculate should be correct. In general (and in jobs set
up and/or launched from the Maestro user interface), no actual
docking calculations are done in the DOCK task that specifies the
reference ligand. It is of course possible to include the reference
ligand in a subsequent DOCK task that actually does dock it.

init
cminit Specify the initial pose of the ligand for energy minimization, if

rough-score screening is not performed. The usual specification
of these keywords (and the default) is init zero cminit lig.
If rough-score screening is run, these keywords are ignored, be-
cause the initial poses for minimization are those that survive
screening.

init zero Specifies that the ligand center should start at the
origin of coordinates, unless displaced by cminit.

init rand [cmrange val] [thetarange val] [phirange
val] [psirange val] [seed num]

Specifies a random starting pose. This is chosen
in the ranges given with the keywords cmrange,
thetarange, phirange, and psirange. That
is, each Cartesian coordinate of the center
position starts in the range (-cmrange/2) to
(cmrange/2) Angstroms about the position
specified by cminit; the Euler angle θ starts in
the range 0 to (thetarange) degrees; φ starts in
the range (-phirange/2) to (phirange/2), and
similarly for ψ. iseed is a seed for the random
number generator. The defaults are cmrange 2.0
thetarange 30.0 phirange 60.0 psirange 60.0
iseed 137.

init read xcm val ycm val zcm val phi val theta val psi
val

Initializes the ligand to the specified pose (center
coordinates in Ansgtroms, angles in degrees), again
subject to modification by cminit.

114 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

cminit zero
Specifies that the starting position of the ligand cen-
ter should be at the origin, or unmodified from the
position specified by init. Thus specifying cminit
zero with init zero or init rand would indeed
place the ligand at the origin of coordinates, or ran-
domly in the specified range around it, which is un-
likely to be useful. But cminit zero is the default
with init read, in which case it leaves the ligand
at the specified position.

cminit lig
Starts the ligand at the position given in the input
file. This is the default with init zero and init
rand. In the latter case, the starting position is
randomly displaced in the specified range about the
input position.

noelec Turn off electrostatic interactions, by setting partial charges to
zero for all atoms in the current ligand. This is reset for each
ligand structure read in, so the noelec keyword must appear in
the first DOCK subtask for each ligand, e.g. in the ligand loop.
Note also that the final reported Coulomb energy for a ligand
pose is a “scaled” energy that depends on formal charges as well
as partial charges, and noelec does not zero the formal charges,
so the output files (.rept and .mae) may report nonzero Coulomb
energies even if noelec is set. But noelec does guarantee that
no electrostatic interactions are included in the sampling and
energy minimization steps, in which the final poses are produced.

stdrot
norot Control the starting orientation of the ligand. stdrot places the

ligand in a standard orientation, with its diameter (the line seg-
ment connecting the two most widely separated ligand atoms)
pointing along the z-axis. norot leaves the ligand in the ori-
entation specified with the init keyword. With init read ...
cminit zero, the ligand starts in the user-specified position and
orientation, and the default is norot to leave it there. In all
other cases, the default is stdrot. The Euler angles that de-
fine poses, in both phases of the docking calculation, are then
defined relative to the standard orientation.

new Indicates that the current ligand molecule has a distinct struc-
ture (not just a different conformation) from the preceding one.
This keyword is usually unnecessary, because the newness of the
ligand is perceived automatically by build primary check in its
CREATE task.

Impact 5.5 Command Reference Manual 115



Chapter 3: Perform Simulations

3.5.10 Subtask Parameter

Specify various parameters and flags.
• parameter [verbosity num] [maxconf num] -

[setup] [save] [clean]

This subtask sets certain controls on the overall operation of the task.

verbosity
Controls the amount of information printed to STDOUT and
to the main output file. The default is verbosity 1, which
should be sufficient for most users’ purposes. Certain things are
printed independent of the value of this parameter, including the
summary (labeled DOCKING RESULTS) of the best-scoring poses
(by various criteria) for each ligand and their scores. verbosity
0 (or less, which is equivalent to 0), prints a bare minimum of
additional information. Values higher than 2 or 3, and especially
higher than 5, print information that’s very unlikely to be useful
to anyone other than developers and debuggers, and can result
in extremely large output files. A given verbosity level remains
in effect unless and until the parameter subtask of a subsequent
DOCK task changes it.

maxconf The maximum number of ligand conformations to be processed
in this job. This parameter sets the size of a dynamically allo-
cated array, and attempting to read conformations beyond this
number will result in an error.

setup Indicates that the current invocation of the DOCK task is only
for the purpose of setting up arrays (including rough-score and
energy grids) for use by subsequent invocations in the same Im-
pact job (as in multi-conformation loops). Though there will
in general be a screen subtask along with parameter setup to
set parameters for the rough-score screening, no actual screen-
ing calculation on the ligand will actually be done at this point.
(Nor will minimization, which there’s no reason to specify at all
in a task with parameter setup.)

save
clean Specify the disposition of various dynamically allocated arrays

(including those that hold the rough-score grids, and the ligand
and receptor coordinates copied from the main Impact arrays)
at the end of the current invocation of the DOCK task. save
means leave them in place for use by subsequent invocations of
the task, clean means delete them, which means any subsequent
invocations must build them again. If setup is specified, save
is the default. (Indeed, setup clean doesn’t make sense: set up
the grids, don’t use them, and then throw them away.) If neither
setup nor save is specified, clean is the default. (But it doesn’t

116 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

hurt to specify save or clean, where appropriate, even if it is
the default.)

3.5.11 Subtask Confgen

Request internal generation of ligand conformers.
• confgen -

ecut val [baddist val] -

[maxcore num] [corescale val] -

[noringconf]

This is the recommended method of incorporating ligand flexibility into
Glide, especially in a multi-ligand job. As shown in the examples above, the
command sequence in an Impact input file should be different depending on
whether there is one input structure per ligand, with confgen specified, or
multiple structures assumed to be externally generated conformers for each
ligand. In the latter case, we recommend a loop over screen subtasks, to run
the first stages of rough-score screening (through greedy score evaluation)
on all of the conformers of a given ligand, before running pose refinement,
grid-energy optimization, and final (GlideScore) scoring on all poses that
pass the first stages for that ligand. With confgen, by contrast, the loop
over the internally generated conformations is specified by a single screen
subtask, so the subsequent steps should ensue immediately.
By default, confgen generates alternative ring conformations for five and
six membered non-aromatic rings. To turn off this procedure, use the
noringconf keyword. For six membered rings, the alternative chair confor-
mation is generated if the equatorial–axial conformational change of the sub-
stituents is empirically not too energetically costly. The five membered rings
currently treated are sugar rings and five membered rings with N and/or S
atoms. The alternative sugar ring conformation generated from the input
consists of the energetically preferred pseudorotation. Five membered rings
with N or S atoms have a second ring conformation generated by rotation
of the out-of-plane corner.

ecut This parameter is the energy cutoff used in the gas phase con-
formation generation. Conformations with an energy above ecut
relative to the lowest energy conformation are not considered.
Note that the energy scale here is with respect to the model
torsion/1-4 vdW confgen potential and not a full force field po-
tential.

baddist The baddist parameter is used to generate a pair list for in-
tra ligand repulsion terms used in the gas phase generation of
conformations. We do not recommend changing this parameter
from its default value of 2.45 Å.

maxcore The maxcore parameter allows the user to define a maximum
number of core conformations to be generated. The default be-

Impact 5.5 Command Reference Manual 117



Chapter 3: Perform Simulations

havior is to use a functional form depending on the number of
rotatable bonds. The maxcore parameter could be used to make
a very approximate rough quick pass at docking. See Section 2
of the Glide Technical Notes for details.

corescale
Corescale is a fractional value to scale down the default number
of core conformations kept. See Section 2 of the Glide Technical
Notes.

noringconf
The noringconf keyword disables ring conformation generation.

3.5.12 Subtask Similarity

Request Glide similarity scoring.
Similarity scoring entails assigning a number to each ligand based on its
similarity to one or more of a set of selected active ligands, and optionally
(weighted or calibrated similarity) also its dissimilarity to a set of selected
inactive or decoy ligands. Unlike most quantities calculated in Glide, sim-
ilarity is a ligand-based rather than a structure-based property. That is,
the similarity between two molecules depends only on the types and con-
nectivity of the atoms in those molecules, and not on any details of their
coordinates or conformations, or on anything to do with the receptor. Glide
thus performs similarity scoring, if requested, just once per ligand. It there-
fore adds negligible overhead to a typical Glide database screening job, and
may even speed it up because some ligands can be immediately rejected.
Weight calibration adds a small amount of time to a grid generation job.
The similarity of one ligand (in the test set) to another (in the training set) is
evaluated by comparing the set of all atom pairs in the test ligand to the set
of all atom pairs in the training ligand. Within each ligand, each atom pair
is characterized by the element types, bond orders, and formal charges of the
two atoms, and the number of bonds in the shortest path connecting them.
The similarity is normalized to a number between 0 (the two molecules have
no atom pairs in common) and 1, in which case the molecules have all the
same atoms with the same connectivities, and are thus either identical or
stereoisomers of each other. For weighted similarity, each atom pair in the
training set (actives) is assigned a weight factor, which is higher if the given
pair appears more often in the actives and lower if it appears in the inactives.
To use similarity scoring, put simil subtasks in the grid generation (only for
calibration in weighted similarity) and ligand docking tasks, following the
meta-examples below. Glide will then adjust the Glidescore of each docked
ligand pose by adding a term that depends on the maximum similarity of
that ligand to any of the actives.

• simil weight actives [maestro | sd] afile fname -

inactives [maestro | sd] ifile fname -

118 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

percent val wfile fname [allprint | noprint]

• simil actives [maestro | sd] afile fname -

[wfile fname] -

[penalty val] [lowsim val] -

[highsim val] [reject val] [allprint | noprint]

• simil name spec

The calibration step for weighted similarity is specified by the weight key-
word. This step should be performed in a grid generation job, and all of the
following keywords are required.

actives [maestro | sd] afile fname
Specifies that the active ligands in the training set are in file
fname, which may be in either Maestro or MDL SD format.
Note that at least two active ligands are required for calibration.

inactives [maestro | sd] ifile fname
Specifies the file containing the decoy ligands.

percent val
Roughly specifies the percentage of the inactives to be included
in weight calibration. Rather than using preselected ligands
from the inactives file, each molecule in the file has val percent
probability of being used in weight calibration. Thus, the num-
ber of ligands selected may not exactly match the user’s percent
input. Note that at least one decoy compound is required for
calibration, and that a weight calibration job will exit if it has
not read in at least two active ligand structures, and chosen
at least one inactive. For best results, we recommend making
the inactives file large enough, and the percent probability
high enough, to use about 5 to 15 times as many decoys as ac-
tives. For instance, if the actives file contains 10 ligands and
the inactives file contains 1000, use a percent value between
5.0 and 15.0. Weight calibration may produce a message stating
that it did not converge (more likely the higher the ratio of inac-
tives to actives), but this is not a problem: a valid weights file is
produced in any case, and contains the "best" weights obtained
with the given structures.

wfile fname
Write the weights to the file fname. This will be a text file, with
each line containing a symbolic representation of an atom pair,
followed by the calibrated weight for that pair.

allprint The allprint keyword enables maximum printing of output
from the similarity machinery including output of the similarity
of each docked ligand to each probe molecule. Default printing
outputs only the maximum simiarity of the docked ligand to any
probe molecule.

Impact 5.5 Command Reference Manual 119



Chapter 3: Perform Simulations

noprint The keyword noprint disables printing of output from the sim-
ilarity machinery.

To use similarity scoring in a ligand docking job, all that’s required is the
specification of an actives file. The simil subtask should appear in the
first (setup) DOCK task of the job.

actives [maestro | sd] afile fname
Adjust the Glidescore values for poses of each ligand according
to the similarity of that ligand to those in file fname. This need
not be the same file as was used for weight calibration in the
previous grid generation job, even if the weights generated in
that job are to be used.

wfile fname
Use calibrated similarity, with weights taken from file fname.

penalty val lowsim val highsim val
Parameters for adjusting Glidescores. If the maximum similarity
between a given docked ligand and any ligand in the actives file
is less than lowsim, add the full penalty value to the Glidescores
of all docked poses of that ligand. If the maximum similarity is
greater than highsim, do not adjust the Glidescores for that
ligand. If the maximum similarity is between those two values,
the Glidescore adjustment is determined by a linear ramp be-
tween the maximum penalty value and zero. Note that while
lowsim must be less than or equal to highsim, there are no
other restrictions on their values; in particular, they need not
be between 0.0 and 1.0, even though all similarity scores will be
in that interval. Choosing lowsim less than zero, for instance,
simply means that the maximum penalty value will never be
applied to any ligand. Also, penalty may be negative, in order
to reward ligands that are not similar to any of the actives (to
promote diversity, for instance). The defaults are penalty 6.0
lowsim 0.3 highsim 0.7.

reject val
Skip any ligand whose maximum similarity to any active ligand
is less than val. Must be between 0.0 (accept all ligands) and
1.0 (skip all ligands that are not identical to or stereoisomers of
one of the actives). Default is reject 0.0.

The third form of the simil command, simil name spec , should appear in
the DOCK task for each ligand. (The first for that ligand, with ligand name
spec rather than ligand keep.) It simply indicates that similarity scoring
is to be applied to species spec (the current ligand), using the actives file
(and weights, if any) read in the initial (setup) DOCK task.

120 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

3.5.13 Subtask Screen

Request screening phase of docking calculation.
• screen noscore -

[refine [refstep num] [maxref num] [refgreedy]]

• screen [scbsize val] [skipb num] -

[maxkeep num] [scorecut val] -

[readscreen fname] [writescreen fname] -

[box center -

[lig | read xcent val ycent val zcent val] -

[boxxr val boxyr val boxzr val] -

[ligxr val ligyr val ligzr val]] -

[readcmsite fname] [writecmsite fname] -

[greedy [fraction weight] [readgreed fname] -

[writegreed fname]] -

[refine [refstep num] [maxref num] [refgreedy]]

noscore Do not perform rough-score calculations or screening on the cur-
rent ligand. This keyword is needed when the refine step must
be performed after a loop (either in DICE or internally) has al-
ready done screening on multiple (internally or externally gen-
erated) conformations. It is probably not useful otherwise.

scbsize The grid spacing, in Angstroms, of the rough-score grid. Default
is scbsize 1.0.

skipb n Use only every n’th grid point in each direction as a possible site
for the ligand center. Thus skipb 2, the default uses one-eighth
of all grid points.

maxkeep Maximum number of poses to pass to the grid energy calculation.
Default is maxkeep 1, but it’s generally not useful to leave it at
that. In our tests, we have found that a few hundred poses, over
multiple conformations, are usually enough to find one or more
good docked poses, at least if greedy scoring and pose refinement
are employed.

scorecut Rough-score cutoff for keeping poses. When accumulating poses
to pass to the grid energy calculations (after they have passed
all other screening tests), a given pose survives if its rough score
is within scorecut of the best pose accumulated so far. Default
is scorecut 100.0.

readscreen
writescreen

Read/write the rough-score grids (and possibly other informa-
tion: see readcmsite below) from/to the indicated file. The file
specified in a readscreen should have been written as the result
of a writescreen in a previous run with the same receptor.

Impact 5.5 Command Reference Manual 121



Chapter 3: Perform Simulations

writecmsite
Write to disk information about possible grid sites for the ligand
center, for those sites that pass an initial (ligand-independent)
filter. This is generally a much smaller set than the entire box
where the rough-score grid is defined, so Glide calculates it once
for a given receptor and store the list on disk for subsequent use
with different ligands. If writecmsite is not specified, this in-
formation is appended to the file specified in writescreen. Dif-
ferent box specifications, or different skipb specifications, result
in different lists of sites, so we provide the option of writing these
to separate files, without repeating the much larger rough-score
grids in the writescreen file, which are independent of skipb.

box Specifies the rectangular box where the rough-score function is
defined (enclosing box), and/or narrower limits on the position
of the ligand center (bounding box). Default for the enclosing
box is that specified in the receptor subtask for the energy
grids, either by the active and buffer specifications or by a
box specification in that subtask. The box center and boxxr
specifications are as in the receptor subtask, with the addi-
tional option box center lig to put the center of the box at
the coordinates of the ligand center in the input file. If the
input is a known co-crystallized complex, box center lig bi-
ases the calculation in favor of the known correct answer, and
should not be used except for testing. The parameters ligxr,
ligyr, and ligzr give the size of the search space for posi-
tions of the ligand center. That is, the ligand center may be
placed at grid points with x-coordinates between approximately
xcent−ligxr/2 and xcent+ligxr/2, and similarly for y and z.
In general, the bounding box should be much smaller than the
enclosing box, because grid points near the edges of the enclos-
ing box will have many ligand atoms outside the box, and thus
be rejected as possible ligand center positions. The Maestro user
interface determines the size of the enclosing box (purple outline
on the Maestro display) by adding to the user-specified size of
the bounding box (green) a buffer big enough to fit ligands up
to a user-specified size, when the ligand center is at the edges or
corners of the bounding box. The limits on the ligand center po-
sition are incorporated in the grid file written by writescreen
(or writecmsite), so box ... ligxr ... is unnecessary when
reading existing grid files from disk readscreen.

greedy Specifies the greedy scoring algorithm, as described above.
fraction weight specifies that the combination to use is weight
times the score at the best surrounding grid point, plus (1 −
weight) times the original score at the central point. The de-

122 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

fault is fraction 0.33, and acceptable values are between 0
and 1. readgreed and writegreed specify reading/writing the
greedy grid (the linear combination at each point, not the best
surrounding score) from/to the indicated file.

refine Specifies the pose refinement step of the screening algorithm.
This involves moving each pose from its original central grid
point to a 3 x 3 cube of surrounding grid points. Each point
is either zero or refstep grid points away from the central
one in each of the positive or negative x, y, and z directions,
where refstep must be smaller than skipb (so as not to get
to a position already tested for the ligand center), and the de-
fault is refstep 1. The algorithm evaluates the score of the
pose centered at each of the 27 grid points (in the same orien-
tation as the original), and chooses the best (lowest) score to
pass to energy minimization. The refinement step improves the
scores of poses that are close to favorable ones that were ini-
tially skipped because of the skipb specification, and thus often
decreases the number of poses that need to be passed to energy
minimization in order to assure that good ones are included. To
decrease the number actually passed, specify maxref less than
maxkeep. Since pose refinement and greedy scoring are both
intended to find good scores that would otherwise be missed
because of skipb, the default is for refinement to evaluate the
27 poses using the original (non-greedy) score, even if the rest
of the screening process used the greedy score. The keyword
refgreed specifies that refinement should use greedy scoring (if
the greedy-score grid is available), but we have not found any
advantage in doing this, and it runs the risk of increasing the
rate of false positives.

3.5.14 Subtask Minimize

Request energy minimization phase of docking calculation.
• minimize flex ftol val dielco val -

[ maxhard val ] [ maxsoft [val] [ sampling val ] -

[ highacc [ ncycle val ] ]

flex Indicates that ligand torsional angles are to be varied during
minimization.

ftol Convergence criterion for the minimizer, expressed as a bound
on the relative energy change at the last iteration. The default
is ftol 1.0e-4.

dielco The dielectric constant, or coefficient of the interatomic dis-
tance in the distance-dependent dielectric function, to be used
in calculating electrostatic energies. Thus if rdiel is specified

Impact 5.5 Command Reference Manual 123



Chapter 3: Perform Simulations

in the receptor subtask, and dielco 2.0 is specified here, the
dielectric used is 2r. The default is dielco 1.0, but we recom-
mend (and the Maestro interface writes) dielco 2.0, along with
rdiel, to weaken long-range electrostatic interactions.

sampling The value of this keyword controls the sampling of ligand tor-
sions, performed after minimization and before final scoring.
Lower values indicate more sampling. The default, sampling
-1, does the most sampling, and sampling 10 does no post-
minimization sampling. In general, more sampling results in
better-docked and better-scoring poses, at the cost of increased
computation time.

maxhard The maximum number of minimization iterations on the hard
Coulomb-vdW surface, default is 50.

maxsoft The maximum number of minimization iterations on the soft
Coulomb-vdW surface, default is 100.

highacc This keyword activates Glide’s extra precision mode, it directly
corresponds to choosing “Extra Precision” in the Maestro Glide
panel “Choose Docking Mode” pull-down selector.

ncycle val
This keyword is only available when highacc is also used, and
sets the number of times the ligands are recycled through the
docking process. This additional effort greatly improves Glide’s
ability to sample all the docking positions of the ligand in the
receptor grid. The default value is 5.

3.5.15 Subtask Final

Specify final scoring function.
• final [glidescore|noglidescore] [read fname]

The final subtask specifies the scoring function to be used for final eval-
uation of the docking affinity of ligand poses. The recommended scoring
function is Schrödinger’s proprietary GlideScore (tm). final glidescore
should appear in the setup DOCK task, and in cases where receptor infor-
mation is to be read from disk, the keyword-value pair read fname should
appear in the DOCK tasks that do the scoring, to indicate the file that con-
tains receptor information needed for calculating GlideScore. In general, the
name of this file will be gridjob.csc, where gridjob is the name of the job
in which receptor grids were created.

3.5.16 Subtask Scoring
Filters and parameters for final scoring.

scoring ecvdw val hbfilt val metalfilt val -

hbpenal val

124 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

The scoring subtask is useful for filtering out ligands, structures, or poses
that might be assigned favorable GlideScore values, but are unacceptable
for other reasons. The filters consist of maximum allowed values for the
Coulomb plus van der Waals interaction energy calculated by grid in-
terpolation (ecvdw), or the hydrogen-bonding (hbfilt) or metal-binding
(metalfilt) terms in GlideScore. Poses that fail these filters are either
skipped or assigned specific unfavorable GlideScore values such as 10000.0.
Alternatively, the user may specify undemanding values (such as 0.0) for the
filters in the Glide run, and impose more stringent filters in postprocessing,
by running the glide_sort script, with the filter values among its argu-
ments, on Glide’s output structure files. This script allows not only filtering
with a variety of criteria, but also re-sorting according to user-specified scor-
ing criteria, without rerunning the Glide job.
The hbpenal parameter is not a filter, but rather the coefficient (default 3.0)
of a term in GlideScore that penalizes poses in which potential hydrogen-
bonding atoms are buried next to non-polar atoms in the ligand-receptor
interface.

3.5.17 Subtask Report

Write final ligand structures and scores to disk, and/or copy coordinates
back to top-level Impact arrays.

• report setup [by glidescore | by energy] -

[nreport num [cutoff val]] [norecep | recep | nil] -

[external file fname] -

[maxperlig num] rmspose val delpose val

• report collect rmspose val delpose val

• report rmspose val delpose val -

write filename fname

• report keep [current | reference | best]

The report subtasks specify how Glide is to select ligands and poses for
output, and how to sort that output. In addition, the keep keyword specifies
the ligand structure to copy internally, for use by subsequent (non-Glide)
Impact tasks.

setup This version of the report subtask, with the following specifica-
tions, is required in the “setup” DOCK task, in order to allocate
memory for the data to be saved and reported.

by glidescore
by energy Indicates whether the poses written to external files

are to be those with the best nreport GlideScore or
the best nreport grid energies (Coul + vdW). (by
score, for the best nreport rough scores, is also
available but not recommended.) The poses will be
sorted in order of the selected scoring function.

Impact 5.5 Command Reference Manual 125



Chapter 3: Perform Simulations

nreport The maximum number of poses to be written to
external files. The actual number written may be
less than this either because fewer poses survive the
rough-score or final scoring filters or because of the
cutoff parameter.

cutoff Saves for output only those poses whose scores or en-
ergies are less than the best (lowest) plus the cutoff
value.

norecep
recep Indicates whether the output structure file (in Mae-

stro format) should include the receptor structure
or not. The default is to include it (recep). If it
is included, the file is suitable for on-screen analysis
using the Glide Pose Viewer; otherwise (norecep),
the file is suitable for use as ligand input in a sub-
sequent Glide job. (Actually, files that do include
the receptor may also be used in this way, simply
by using the gotostruct keyword upon reading the
file, to skip the receptor structure (which is always
the first structure in the file).)

external file
Store qualifying poses from each ligand, as it is pro-
cessed, in the specified file. The resulting file will
in general be larger than the final output, as poses
saved from one ligand may ultimately be displaced
by better-scoring ones from subsequent ligands. But
this method saves both CPU time and system mem-
ory, and also provides a “checkpoint” file of results
so far, in case the job fails in the middle of the run.
Unfortunately, external file storage does not work
for “score in place” jobs, or if the confgen option
(flexible docking of internally generated conforma-
tions) is not selected. We strongly recommend its
use in all other cases.

maxperlig
Maximum number of poses to save for each distinct
ligand molecule. Maxperlig 1 is particularly appro-
priate for relatively rapid filtering of a large ligand
database. The best-scoring ligands from such a run
may then be used as input to a run with larger
maxperlig, to get finer detail of binding modes, etc.,
of the top ligands.

126 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

rmspose
delpose Criteria for eliminating “duplicate” poses, i.e., those

that are too similar for both to be worth saving.
Two poses are considered distinct if they satisfy ei-
ther the RMS deviation or the maximum deviation
criterion. The recommended values are rmspose
0.5 delpose 1.3. These must be specified in ev-
ery report subtask.

collect Store the data for poses to be saved from the current ligand.
This version of the report subtask typically appears in a loop
over ligand (and/or conformer) structures. If external file
was specified with report setup, the qualifying poses are saved
to the external file; otherwise, their scores and identifiers, and in-
formation needed for reconstructing their structures, are stored
in memory.

write filename fname
Write the saved poses, and a summary report, to disk, using
fname as a base for the file names. The report will be writ-
ten to fname.rept. If the receptor structure is included, it and
the ligand pose structures will be written to fname pv.mae (pv
for Pose Viewer); if not, the ligand structures will be written
to fname lib.mae (a “library” of ligand structures for future
use). If an “intermediate” external file was specified in the
report setup subtask, Glide internally runs the glide_sort
script (with filters as specified in the scoring subtask, and de-
faults for other arguments) on the intermediate file to get the
final output. For postprocessing, the user can run glide_sort
on either the intermediate file or the final output file.

keep Specifies which coordinates to copy back to the main Impact
coordinate arrays, for subsequent Impact tasks.

current Do nothing. This maintains the Impact coordinate
arrays as they were upon input to the current DOCK
task.

reference
Copy the reference conformation (in its input pose)
back to the Impact arrays.

best Copy the best pose (by GlideScore or grid energy, as
specified with report by) back to the Impact arrays.

3.5.18 Subtask Run

Run docking calculation as specified in previous subtasks.

Impact 5.5 Command Reference Manual 127



Chapter 3: Perform Simulations

• run

Run the calculation. No keywords because they’re all specified in the previ-
ous subtasks.

3.5.19 Results printed to Impact output

In addition to the structural output and summary reports described above
(Maestro format structures in ‘*.ext’ and either ‘*lib.mae’ or ‘*pv.mae’;
summary reports in either ‘*.rept’ or ‘*.scor’), Glide reports results for
each ligand it processes to the usual Impact output, namely “standard out-
put” (typically redirected to file ‘jobname.log’) and the main output file
(typically ‘jobname.out’) specified in the write command at the top of the
Impact input file. For each ligand processed, this output includes informa-
tion on the best pose found according to each of several scoring criteria.

DOCKING RESULTS FOR LIGAND 1 (Atropine)

Best Glidescore=-6.24 E=-26.53 Eint=5.56, pose 277, conf 2, lig 1; rmsd=66.161

Best Emodel=-57.10 E=-43.85 Eint=2.10 Glidescore=-5.42, pose 16, conf 3, lig 1; rmsd=61.597

Closest rmsd=61.572, pose 57, conf 3, lig 1; Glidescore=-2.48 E=-43.70 Eint=2.02

Lowest Efinal=-43.99 Eint=1.99 Glidescore=-2.23, pose 17, conf 3, lig 1; rmsd=61.596

In each of the above output lines, E or Efinal is the minimized, grid-
interpolated Coulomb + vdW interaction energy between the receptor and
the ligand in the particular pose; Eint is the internal (torsional) energy for
the particular Glide-generated conformation of the ligand, and Emodel is the
combination of E and GlideScore that Glide uses to rank poses of the same
ligand. Rmsd is the heavy-atom RMS deviation between the particular pose
and the reference ligand, and is reported only for the first ligand processed,
and only if it is the same molecule as the reference.
In rigid docking runs, Glide groups together conformers of the same ligand
that appear consecutively among its input structures. In such cases, the
DOCKING RESULTS above are reported for the entire group, with an indication
that all are conformers of one molecule.

DOCKING RESULTS FOR LIGANDS 57 -- 58 (Confs of p38-pyrimidone0003)

Best Glidescore=10000.00 E=329.44, pose 1, conf 1, lig 57

Lowest Efinal=237.13 Glidescore=10000.00, from pose 9, conf 2, lig 58

Best Emodel=10000.00 E=237.13 Glidescore=10000.00 from pose 9, conf 2, lig 58

The values of 10000.00 in the above table indicate that Glidescore and
Emodel were not evaluated for those poses, because they did not pass the
filters specified in the scoring subtask. Note that lig 57 and lig 58, and
all ligand numbers reported in Glide output, refer to the position of the
molecule in the user’s input structure file. This correspondence is main-
tained not only for multiple conformers as above, but even if Glide cannot
process some of the input structures. In other words, if the 56th structure
in the input is skipped because it’s too big, has unrecognized atoms, etc.,
the next structure will still be reported as ligand 57. Also, since this job
did not generate ligand conformations internally, the designations conf 1,
lig 57 and conf 2, lig 58 are actually redundant: the only conformations

128 Impact 5.5 Command Reference Manual



Chapter 3: Perform Simulations

analyzed are those that were in the input, so lig 57 is the first conformation
of this molecule, and lig 58 is the second.
In addition to the above output of “best” poses, Glide will print tables of
poses processed from each ligand, after the rough-score and energy mini-
mization steps, if the verbosity parameter is set higher than 1. Since this
output can run to tens or hundreds of poses per ligand, we strongly recom-
mend against setting verbosity that high in jobs with many ligands, except
for testing or debugging purposes.

Impact 5.5 Command Reference Manual 129



Chapter 3: Perform Simulations

130 Impact 5.5 Command Reference Manual



Chapter 4: Advanced Input Scripts

4 Advanced Input Scripts

In this chapter, we will discuss some advanced features of Impact input
scripts (DICE scripts). You will find it is very powerful after you spend some
time with it. You can manipulate internal data lists; you can use if else
endif statements inside the input file; you can specify a while endwhile do
loop to control a simulation; you can even call a previously written script
subroutine to perform a common task, etc.

4.1 Background
As you have probably noticed already, at its core Impact is a program for
processing a series of commands in a control file, the input file. These basic
commands comprise a set of powerful tools for modeling complex chemi-
cal structures; the three levels of commands are the task, subtask and the
“program” levels. The last level is independent of which task or subtask
is presently being used, and consists of a set of data structures and pro-
gramming constructs. At the program level it is possible to write programs
defining the execution of Impact, as well as to access and modify internal
Impact data structures using lists. For example, counters can be created
and incremented, tasks and subtasks can be executed inside of looping con-
structs, and the internal state of Impact can be examined or modified.
The task level communicates to the program that a group of complex op-
erations will be performed. Each task is invoked by giving the task name
alone on a line of the input file. For example, for the dynamics task, which
integrates the equations of motion for a chemical system, the word dynamics
appears alone on a line. This causes the program to branch into the portion
that performs a molecular dynamics simulation. The word quit (alone on a
line) ends the current task and returns the execution pathway to the main
controller. At this point the subsequent task is performed.
Inside each task a series of subtasks are performed. Here details are given
about the particular pathways to follow or parameters to use in the con-
text of the current task. For example, in the task setmodel (which specifies
the features of the energy model to be used in simulations) the subtask
setpotential specifies the types and weights to be used in the energy func-
tion. The subtask mixture takes a solute molecule and places it in a box of
solvent molecules.
At the lowest level, programming constructs and data structures are ma-
nipulated in a task/subtask independent way. When these programming
constructs are used, the commands appear by themselves on a command
line. For example, in using Impact’s conditional construct, an if block, a
line such as ‘if ’a’ eq ’b’ dynamics endif’ would not work, however, the
following multiple line command is acceptable:

if ’a’ eq ’b’

dynamics ! do the task dynamics if ’a’ and ’b’ are equal

Impact 5.5 Command Reference Manual 131



Chapter 4: Advanced Input Scripts

< some dynamics operations >

quit

endif

The existence of a programming language inside of Impact greatly increases
both its ease of use and the ability to express complex computational exper-
iments that might otherwise be all but impossible to perform.
The data structures available in Impact are scalars and lists, which corre-
spond to variables and constants in typical programming languages. Lists
are perhaps most similar to arrays of records, and may contain one number,
or thousands. An Impact list is like a two dimensional array in containing
rows and columns; the number of rows is called the size and the number of
columns is called the dimension of the list. An element of a list is, for exam-
ple, the value at row 1 and column 1.1 Generally the size of a list is flexible
and will grow as needed, whereas the dimension is fixed and is determined
by how the list was first created. Arithmetic operations on lists normally
require that both operands be of the same dimension or that one be scalar.
When used as a logical expression, an empty list will be the same as a false
expression. Conversely, a list with any elements in it is a true expression.The
elements of lists can be referenced in a number of ways.

4.1.1 Lists

For the user of Impact, the primary means to manipulate data is using the
data structures referred to here as lists or tables.2 The names of lists are
always placed within single quotes when used, and these names have max-
imum lengths of 30 characters. All characters supported by the computer
are allowed with the exceptions of single quotes and underscores. Some valid
names are ’Validname’, ’themotherofalllists’’ and ’abc123me&u’. Note that
underscores should not be used in list names since they are used to delimit
columns of real numbers.
A list is a collection of related elements with a well defined structure, both in
size and dimension. Some major types of list structures in Impact are atom,
residue, molecule and species number; these types of structure are automat-
ically recognized within Impact. Properties such as charge and surface area
are frequently calculated in one of these types of list. Other types of list
may also be used, for example lists to store properties with cartesian (x, y,
z) components, or lists of position, force and velocity. Another type of list
is a set of of statistics containing the three components sum, average and
standard deviation.
There are two broad catagories of lists, user defined and internal. Most
properties are shared by these two types. However, several internal lists

1 A list with size 1 and dimension 1 would be the same as a scalar variable found in many
computer languages.

2 Lists and tables are equivalent.

132 Impact 5.5 Command Reference Manual



Chapter 4: Advanced Input Scripts

are tied to the internal system state. Internal lists are “peep holes” into
the major Impact data structures. These lists are created the first time
they are referenced as a copy of the current state of the related Impact
data structure.3 These lists are are structured according to the information
contained within them, since Impact is able to create the structure of the
list from the information in the chemical system currently being used. For
example, the list surfacearea is structured by atom.
Both internal (built-in) and user defined lists only “come into existence”
the first time they are specified. Because internal lists are only copies of
the internal data structures used by Impact, they stay fixed after the initial
copy is made, even if subsequent Impact tasks modify the corresponding
internal data structures. These lists are only “refreshed” with current data
when used the first time. To subsequently update the lists with new data
the old copies are first erased using the reset command, after which any
subsequent use of the list will cause it to be updated with the current Impact
data. For later updating, the reset command must be used again. Many
of these built-in lists are useful for storing information from tasks for later
retrieval. This is particularly useful if dynamics is being run on the same
system many times. Then the average of the averages of individual runs can
be obtained.
While internal lists may be used before being assigned values, they will some-
times be undefined until certain subtasks are executed. For example, the
bondlist has a component that is the actual bond energy, but this assumes
that the parameters have been defined by using the setmodel task. The
list Current.kinetic contains the current kinetic energy but this requires
that dynamics has been run. Other internal lists requiring that a task or
subtask be performed before they may be used are the lists for surface area
(surfacearea) and the rms deviation (rms.dev.atom), where the analysis
task must be run and the appropriate subtasks performed before the lists are
properly defined. The creation of these lists is done automatically, and they
may be used after the subtasks are run. The cartesian coordinate list (cord)
can be used at any point after the task create is performed. In general,
the contents of the list will vary depending on when the list is used. For
example, the values of cord change after a dynamics run. Remember the
caveat that the value of internal lists are set as soon as they are used, but
if the values need to be updated the command reset must be used to clear
the old contents of the list. The next use of the list name will then cause
the values of the list to be updated.

4.1.2 Internal Lists

The following tables show the internal (“built-in”) lists that carry the current
state of various Impact internal data structures.

3 We emphasize that internal lists are user-accessible copies of the Impact data structures.

Impact 5.5 Command Reference Manual 133



Chapter 4: Advanced Input Scripts

Global Impact built-in lists
List name List type Impact tasks
surfacearea atoms analysis
hydration atoms
bondrr residues
torsionrr residues
14elerr residues
vdwerr residues
hb1012rr residues
totalrr residues
anglerr residues
14ljerr residues
noerr residues
eelrr residues
hbelrr residues
rmsfluctuations atoms mdanalysis
avg.temp species dynamics
avg.kinetic species
avg.bond species
avg.angle species
avg.torsion species
avg.nonbonded species
avg.lj612 species
avg.coulomb species
avg.hbond species
avg.lj14 species
avg.coulomb14 species
avg.potenergy species
avg.totalenergy species
avg.translation species
avg.rotation species
avg.virial species
avg.tail species
current.kinetic species
current.translation species
current.rotation species
current.temp species

134 Impact 5.5 Command Reference Manual



Chapter 4: Advanced Input Scripts

Global Impact built-in lists (continued)
List name List type Impact tasks
potenergy species minimize, montecarlo,
current.bond species or dynamics
current.angle species
current.phi species
current.nonbonded species
current.lj612 species
current.coulomb species
current.hbond species
current.lj14 species
current.torsion species
current.buffer species
current.tail species
current.energy species

Global Impact built-in lists with subfields
List name List type Subfields (names)

atoms atoms
residues residues
molecule molecules
species species
force atoms x y z
velocity atoms x y z
box dimensions x y z
charge atoms
bondlist bonds bdis (distance) enrg (energy)
anglelist angles bang (angle) enrg (energy)
torsionlist torsions btors (torsion) enrg (energy)
cord atoms x y z
intcord atoms bnd (bond) ang (angle) phi (torsion)

4.1.3 Subsets of Lists

It is often desirable to select an element, or sets of elements from lists. There
are several ways to do this.

4.1.3.1 Underscore notation
Lists with multiple dimensions may be referenced by appending an appro-
priate suffix to the list name, where the format is ‘listname_ref ’. For
cartesian components the suffixes are _x, _y and _z, and for statistical com-
ponents _sum, _avg and _stdev. For instance, the x component of the force
list named ’myforce’ would be named ’myforce_x’. A collection of other
prefixes is:

_1 _2 _3

Impact 5.5 Command Reference Manual 135



Chapter 4: Advanced Input Scripts

_bdis _enrg

_bang

_btors

_bnd _ang _phi

Another use of the underscore is to modify the order of printing or calcula-
tions. There are a number of field modifiers supported, and the order field
modifiers appear will dictate the order they will appear in the resulting list.

’cord_x_y_z’ same as ’cord’
’cord_y_z_x’ a 90 degree rotation
’intcord_phi’ only interested in the angle value
’bondlist_enrg’ only interested in bond energy
’torsionlist_btors’ only interested in torsion value

4.1.3.2 Lists as arrays

A range of list elements can be specified using square brackets. For instance,
’myforce_x[1:100]’ specifies the first 100 elements of the list of x compo-
nent of force. A sublist may always be substituted for a list.

4.1.3.3 Colon notation

Subsets of lists can also be specified using colon notation and a number of
list operations. Note that the properties defined using colon notation make
up a virtual list when used with the list selectors, i.e., the with command.
This is done by defining constraints (properties), each constraint building
on the previous ones, until a collection of properties is specified that defines
the structure of interest. With this structure you can then select a subset of
elements from a list of interest.
In the following code fragment

species:spec:molecule:mol:

we specify a subset where the elements share the properties of (a) belonging
to species spec and (b) belonging to molecule mol. In

residue:res:atom:atom:

the elements of the defined subset would belong to residue res and possess
the atom name atom1. Any of these specifiers may be replaced by a range of
names or numbers separated by a hyphen, or a group of comma-separated
names or numbers. The wild card character ‘*’ may be used to specify all
names or numbers of a particular type, or it may also be used with any
combination of symbols to create a name.
It is important to emphasize that the rightmost component of this structure
specification determines the structural feature referenced. For instance,

species:1:residue:1:atom:1

refers to atom number one in residue number 1; whereas
species:1:residue:1

1 The specifiers spec, res or mol are names or numbers.

136 Impact 5.5 Command Reference Manual



Chapter 4: Advanced Input Scripts

refers to the entire first residue. Molecule is an optional specification. If
the species or the residue specification is omitted then all species or all
residues are implied. Here are some examples:

species:1 ! species one

species:1:residue:1 ! the first residue in species one

species:Water ! the species named Water

residue:1 ! residue one

residue:1:atom:* ! all atoms in residue one

residue:1-3,6:atom:* ! all atoms in residues one through three and six

residue:1:atom:C* ! all carbon atoms in residue one

residue:HYP*:atom:C* ! all carbon atoms in all HYP residues

A constraint is one of the following:
• Any internal list that contains a valid structure (e.g., an atom, residue,

molecule or species list).
• species:ranges:
• molecules:ranges:
• residues:ranges:
• atoms:ranges:

4.1.3.4 Hyphen notation

Ranges are a list of numbers separated by hyphen (inclusive) or commas or
a list of strings with or without wild cards, the ‘*’ character.

residues:1-4:atoms:CA,C,N:

molecules:1:atoms:1,3-5:

species:1:

residues:*:atoms:C*:

atoms:1-4:’myproperty’

Note that an attempt will be made to locate the specified structure through-
out the whole system. For example, the query

atoms:1:

returns a list containing the first atom for each residue and not just the first
atom of the entire system.
Once a structure is defined, a subset can be chosen where the elements share
appropriate properties. In the following items the subsets are equivalent to
lists. The list selector with is used here for selecting subsets from lists, and
along with other selectors is described below.
• ‘’surfacearea’ with atoms:1-4:’ results in a subset of the list

surfacearea corresponding to atoms 1 to 4.
• ‘’force_x_y’ with residues:1-3:atoms:*:’ results in a subset of the

list force containing the x and y force components for all atoms in
residues 1 to 3.

• ‘’rmsfluctuations’ with residues:4:atoms:h*:’ results in a subset
of the list rmsfluctuations for all hydrogen atoms in residues 1 to 4.

Impact 5.5 Command Reference Manual 137



Chapter 4: Advanced Input Scripts

Having selected the range of properties you wish to work with you can do
operations on those properties. A large library of arithmetic and statistical
functions is available.

4.1.4 List Creation

Lists are generally created using the command put; however, create has
some uses that the other doesn’t.

4.1.4.1 Put
The put statement is used to assign values to lists. In doing so the list is
created if it didn’t already exist.

put ’expression’ into ’list’

4.1.4.2 Create

Create a new list.

4.1.5 List Selection

As noted above, the properties describing subsets of lists are built up us-
ing several notations, and subsets of lists are actually constructed using list
constructors like with; this and other list functions are described here. The
resultant subsets are often placed in new lists, which is the convention fol-
lowed in these examples.

4.1.5.1 With
The function with returns those elements in one list that are found in both
lists. Atoms, molecules, residues, and species are recognized by these func-
tions. In the following example those elements in the ’charge’ list belonging
to atoms with names beginning with the letters ’CA’ are selected.

put ’charge’ with atoms:CA*: into ’result’

4.1.5.2 Withonly
The withonly function extracts those elements in the list whose atom,
molecule, residue or species specification match the entire target specifi-
cation. In the following example, only those bonds containing both CA*
and N* atoms are extracted. In contrast the selector with returns all bonds
with CA or N atoms.

put ’bondlist’ withonly atoms:CA*,N*: into ’result’

4.1.5.3 Without
The without function returns those elements in the first list that do not
have relations with the second list. This example extracts those elements
from the torsional internal coordinate list that are not hydrogen atoms.

put ’intcord_phi’ without atoms:h*: into ’result’

138 Impact 5.5 Command Reference Manual



Chapter 4: Advanced Input Scripts

4.1.5.4 By
The by function returns a list that is the result of applying the previous
function over a long list split up by its structures. By requires two lists.
One of these is called the limit and must be of type residue, molecule or
species, and the other is called the range and must be of type atom, residue
or molecule. The result is a list the same length as the limit, with each
element storing the result of applying the previous function over the range
split up along the structures of the limit. The functions you can apply by
to include: abs, int, avg, stat, sum, sum2, ln, sin, cos, tab, asin, acos,
and atan. The following example results in a list of type residue with each
element storing the sum of the atom charges for each residue. (In most cases
this would be a of list of zeros, ones and minus ones.)

put sum ’charge’ by ’residue’ into ’result’

4.2 Operations on Data
A range of functions and list-selectors are available, including the standard
arithmetic expressions and a set of functions defined solely for lists. A list
expression is a list or any arithmetic or functional expression that results
in a list, and a list-expression may always be substituted for a list. The
arithmetic operators include exponentiation (^), multiplication (*), division
(/), addition (+), subtraction (binary -) and negation (unary -). These may
be applied to constants, such as ‘2 * 2’, or used as list operators. Operations
may be performed between lists with common structures, or between lists
and scalars.
When operations occur between lists of different dimensions, the result of the
operation inherits the dimensionality of the list of higher dimension. Con-
sider the following examples in which ’myforces’ is a list of atomic forces
having an atomic cartesian (x, y, z) structure, ’jscal’ is a user-defined list
having a simple atomic structure, and ’const’ is a scalar sonstant.

’myforces_x’ * ’jscal’

multiplies the corresponding elements of the x component of ’myforces’ and
’jscal’.

4.2.1 General Operations

Arithmetic functions are applied to a list in one of three ways:
1. If one of the operators is a single element, the operation is done with

the value of that element against all the values in the other list. (That
means that you can multiply an entire list by a single constant.)

2. Some functions take only a single list and return a few elements of
information about that list, such as the average value of the list, or its
four (4) greatest values.

3. If you are applying a function between two lists and both lists have size
greater than 1, that function will be applied to each element in the two

Impact 5.5 Command Reference Manual 139



Chapter 4: Advanced Input Scripts

lists that correspond to each other. This means you can add the values
of two lists in an element by element manner.
1 + ’mydata’ ! every element gains 1

’mydata’ + ’mydata’ ! <--- these are

2 * ’mydata’ ! the same

’mydata’ pow 0.33333 ! cube root

7 lowest ’mydata’ ! sorted lowest 7 elements

avg ’mydata’ ! the list average put in a new 1 element list

(sum ’mydata’)/(length ’mydata’) ! silly way to avg

(’newdata’+’olddata’)/2 ! result is a new list consisting of the

! average values of each of the list elements

’myforces_x’ * ’const’

multiplies all the x components of ’myforces’ by the value of ’const’.
The command

’myforces’ + 2.0

adds the value of 2.0 to all of the components (x, y, z) of ’myforces’.

140 Impact 5.5 Command Reference Manual



Chapter 4: Advanced Input Scripts

General Operators
Operator Function Parameters Units
+ Addition 2
- Subtraction 2
* Multiplication 2
/ Division 2
abs Absolute value 1
acos Arc Cosine 1 radian
add Addition 2
asin Arc Sine 1 radian
atan Arc Tangent 1 radian
avg Average 1
avgb Special case of by function 2
by Apply a 1 parameter function over

a list of values
(e.g. sum ’charge’ by ’residues’)

cos Cosine 1 radian
distance Distance Function 2 cord units
div Division 2
grdist Greatest Distance 2 atoms units
greatest N Maximum values 2

e.g., 3 greatest ’bondlist bdis’
index Extracts an element from a list 2

e.g. index 10 ’charge’
gets the 10th value from the charge list)

int Truncation 1
length Size of list 1
lowest N Minimum values 2
ln Natural Log 1
^ Exponentiation 2
exp Exponentiation (base e) 1
lstdist Least Distance 2 atoms units
alldist All distances 2 atoms units
hist Histogram 2
max Maximum value 1
min Minumum value 1
mul Multiplication 2
pow Power function (base 10) 1
rand Random number 1
runavg Running Average 1

Impact 5.5 Command Reference Manual 141



Chapter 4: Advanced Input Scripts

General Operators
Operator Function Parameters Units
sin Sine function 1 radian
sizeof Size of list 1
sqrt Square root 1
sqr Square 1
stat Sum, Average, Standard Deviation 1 result is dimension 3
std Standard deviation 1
sub Subtraction 2
sum Add all columns 1
sum2 Add and square columns 1
sumby Special case of by
tan Tangent function 1 radian

Relational Operators
Name of function Example of usage

and if (’timer’ gt 1) and (atoms:ca:)
eq 131 eq 23
ge ’charge’ ge 0.2
gt ’bondlist bdis’ gt 1.2
le ’bondlist bdis’ le 1.1
lt ’anglelist bang’ lt 45
not if not ( ’timer’ gt 50 )
or while ( ’counter’ lt 100) or ( sum ’list’ lt 1 )
xor avg ( species:*:atoms:c*:) xor avg ( species:*:ca:)

4.2.2 Relational Operators

Relational operators may be used to perform list comparisons, and include
lt, le, eq, gt, and ge. For example, the following relational expression
could be used to select the forces greater than 0.05:

(’myforces_x’^2 + ’myforces_y’^2 + ’myforces_z’^2)^0.5 gt 0.05

The boolean operators and, or and not may be used to combine relational
expressions; in particular, a “not-equal” operation can be performed by using
not to negate an eq comparison.
In addition to the standard mathematical operators, Impact provides many
higher level operators that perform selection operations on lists. For in-
stance, the with operator allows a constraint to be applied to a list. In this
example, with is employed to restrict the list of surface area for each atom
to those cases in which the charge on each atom in list ’qbyatom’ is greater
than 0.2:

put ’surfbyatom’ with (’qbyatom’ gt 0.2) into ’result’

142 Impact 5.5 Command Reference Manual



Chapter 4: Advanced Input Scripts

Character and String Operators
Operator Function Parameters
char Integer to char conversion 1
concat Append two strings 1

4.2.3 List Operators

Here the remaining list operations are fully described. These are really
context-independent subtasks and are not expressions.

4.2.3.1 Restore
Restore copies the contents of a list to an internal list, from where it will
be copied to one of the the internal data structures used in Impact (e.g., a
common block). One such internal data structure is charg, another is xyz.
For example, if some operations have been performed on a list of coordinates
it may be desirable to have one of the standard tasks operate on these new
coordinates. Note the required use of the square brackets as delimiters!

put ’cord’ + [ 0.10 0.10 0.10 ] into ’cord’ ! translate coordinate list

restore xyz ’cord’ ! put it back into the actual cartesian coordinates

dynamics ! now run dynamics

4.2.3.2 Rand

The rand function returns a single random number in the range 0.0 to the
first element of its parameter. A negative parameter resets the seed number.

4.2.3.3 Smooth

The smooth function returns a list that has less noisy data points. Smooth
breaks up the input list into a series of short ranges and preserves for the
final output those elements that are the mean value of the short ranges. The
size of the range is determined by the first element of the first parameter,
which should be an odd number such as 3, 5 or 7. Very large ranges will
result in serious loss of information.

4.2.3.4 Histogram

The hist (histogram) function does a count frequency on a list (first pa-
rameter) using parameters in a second list. The first list can be any list
with no more than 3 real columns of data. The second list must contain the
minimum value of the histogram, the number of intervals and the width of
each interval. This information can be stored in a list as in [ 0.0 100 0.25 ] or
as a list of 3 elements each with 1 real field, e.g., ‘ 0.0 append 100 append
0.25’. The result of this function is a list with the same number of real
columns as the first argument containing the count of values in each interval
plus an additional column containing the values of each interval (e.g., the
above parameters would give 0.0, 0.25, 0.50, etc).

Impact 5.5 Command Reference Manual 143



Chapter 4: Advanced Input Scripts

4.2.3.5 Distance

The distance function returns the distance between two coordinate sets.
Coordinates are in x y z format. The coordinates for the current system are
stored in the built-in parameter list named ’cord’.
The grdist and lstdist functions return the greatest or least distance from
every atom in the first parameter from every atom in the second parameter.
The function alldist returns a list of all distances between the two input
lists. This function should be used carefully since it creates lists of the size
of n ×m where n and m are the size of the atom lists used as parameters.
The result is a bond list.

4.3 Advanced Scripts
Using the tools available in Impact, you can program simple tasks that allow
one to:
• analyze data as it is being generated;
• automate simulations, look at results, modify input files and relieve

resubmission drudgery;
• provide an easier method to plot and study Impact compatible data;
• analyze the result of past Impact runs stored in trajectory files;
• provide a mini programming language to allow simple algorithms not

yet implemented in Impact to be tested with access to the Impact data
bases for run time analysis.

4.3.1 Flow Control

Essential tools needed to control the flow of a program are provided.

4.3.1.1 While
The while statement is used to conditionally execute the contents of its
body, repeating until the condition is false. While you can nest these loops,
it is very important that you never use the goto statement to jump inside
of one. The format of the while statement is

while expression

body of while loop

endwhile

4.3.1.2 If/else/endif
In an if expression, the first expression following if is tested for its truth
value. If true the body is executed. If an else is present then the optional
code following else is executed when expression is false.

if expression

body

else

optional code

144 Impact 5.5 Command Reference Manual



Chapter 4: Advanced Input Scripts

endif

If statements may also be nested, with one endif for every if. As in the
case of the while statement it is illegal to jump into an if block using a
goto.

4.3.1.3 Goto
Goto is provided but not recommend. The format of the goto statement is

:label ! note the colon

some code

goto label ! loop to label

As noted, a goto may not cause a jump into the body of an if block or of a
while block.1 Use of a goto statement to jump out of an if or while block
can cause stack overflows if done repeatedly.2 A goto jump from within one
if or while block into another if or while block will, of course, be fatal.

4.3.2 Subroutines
Call a subroutine and return. Call passes its optional parameters by the
method of “pass by name”; this is a somewhat obscure method of passing
parameters. “Pass by name” from the user’s viewpoint is equivalent to “pass
by reference”. This means that any change in the value of the parameters
within a subroutine will be passed back to the calling routine. Care must be
taken to be sure that the main procedure does not extend into a subroutine.
You should always follow the main procedure by the keyword end.

call alpha(100 ’a’ ’result’) ! call the subroutine

some more code

:alpha(’a’ ’b’ ’c’) ! bind a, b, c to 100, ’a’,, and ’result’

definition body ! perform calculations

put ’somevalue’ into ’c’ ! return the result in variable ’result’

return

You may also append a file name after a call, this will cause the program
to execute that subroutine within that file. Note that except for this special
case all subroutines are searched for from the top of the current program in
a first found, first executed manner.

call label [ parameters ] file fname

4.3.3 Spawn
Spawn starts a shell process at the operating system level and waits for the
result.

spawn shell command UNIX shell command

spawn shell file executable file’s name

1 A block is all tasks up to the endwhile or endif.
2 In a purely theoretical sense this is the only legitimate use for goto, and should properly

be called break or exit.

Impact 5.5 Command Reference Manual 145



Chapter 4: Advanced Input Scripts

4.3.4 Lists as Parameters

Numeric lists can be placed anywhere a number normally can be specified;
if an operation requires a scalar value then the first element from the list’s
numeric field is used. Short character lists can also be used to hold filenames,
which is especially useful when many files are being created and unique
names are needed. Though we are getting ahead of ourselves by discussing
specific tasks in the following example,3 it does illustrate the use of different
list operations and types of lists. Here we loop over the run subtask in
dynamics4. While it would often only be desired to save the final state in
a restart file, saving intermediate states assures that intermediate work has
been saved if the job is terminated for any reason. A series of trajectory files
might be saved in the same way.

’i’ is a list that is used as if it were an integer variable.

’filename’
is a list of characters that is modified in each stage of the dy-
namics run. Thus, unique trajectory files may be written for
each phase.

$protein$ and $ps$
are string constants. Note the use of the dollar sign to delimit
string constants.

3 The example uses meta-variables that are explained in Chapter 2 [Setup System], page 15.
4 The task dynamics is described in Section 3.2 [Dynamics], page 60

146 Impact 5.5 Command Reference Manual



Chapter 5: Trouble Shooting

5 Trouble Shooting

This chapter describes some common problems with starting or running
Impact. Naturally, we hope that you will never need to use this chapter.
However, if you have problems using Impact, you may find useful advice
here. You may also contact us using the information on the cover page.

5.1 Problems Getting Started
This section describes how to overcome some problems in starting up your
Impact jobs. The next section describes problems that occur during job
execution.

5.1.1 Environment variable SCHRODINGER not set.

Before running Impact, or any Schrödinger product, on any particular
machine, you must set the environment variable SCHRODINGER to your
Schrödinger installation directory. If this environment variable is not set
correctly, you will be told directly:

unix% /usr/apps/schrodinger/impact -i dynamics_job.inp

ERROR: SCHRODINGER is undefined

unix%

Or if the program stops at automatic atom-typing for ligand molecules, it
will prints out message like this:

%IMPACT-I (readhead): input file 23 has no header information.

%IMPACT-I (readhead): input file 23 has no header information.

PARM read from file paramstd.dat

Environment variables MMSHARE_EXEC and OPLS_DIR not defined

Set OPLS_DIR so that ATOMTYPE can find data files

It is easy to fix this problem, first check whether SCHRODINGER is set or not,
enter the command

% echo $SCHRODINGER

If you see this environment variable is not set or set to a wrong directory,
change it to a right directory. If you are running C shell (csh) or tcsh, type
the command

% setenv SCHRODINGER your Schrödinger installation directory

or if you are using bash, sh or ksh, type the command
% export SCHRODINGER=your Schrödinger installation directory

5.1.2 Bad residue label
The current Impact program requires the user to separate a ligand molecule
from the protein in the input PDB files. This means PDB files for proteins
must contain only the regular amino acids and buried waters, but not a
nonstandard residue name unless it has previously been defined. Here is an
example of a PDB file containing a residue named NOA (NAPHTHYLOXY-
ACETYL):

Impact 5.5 Command Reference Manual 147



Chapter 5: Trouble Shooting

...............

...............

ATOM 1485 CD2 NOA I 201 4.098 9.733 20.948 0.50 20.67

ATOM 1486 CD1 NOA I 201 6.413 10.411 21.013 0.50 20.84

ATOM 1487 CE1 NOA I 201 6.706 9.320 21.850 0.50 21.17

ATOM 1488 CZ1 NOA I 201 5.694 8.437 22.228 0.50 20.95

ATOM 1489 CE2 NOA I 201 4.385 8.645 21.778 0.50 21.01

ATOM 1490 CZ3 NOA I 201 1.771 9.028 20.869 0.50 21.10

ATOM 1491 CE3 NOA I 201 2.786 9.926 20.504 0.50 20.98

ATOM 1492 CZ2 NOA I 201 3.379 7.740 22.165 0.50 21.13

ATOM 1493 CH2 NOA I 201 2.067 7.934 21.703 0.50 21.20

ATOM 1494 C NOA I 201 4.312 13.086 17.860 0.50 18.24

ATOM 1493 CH2 NOA I 201 2.067 7.934 21.703 0.50 21.20

ATOM 1494 C NOA I 201 4.312 13.086 17.860 0.50 18.24

ATOM 1495 O NOA I 201 5.155 13.679 17.160 0.50 17.86

..............

..............

The program will stop because (we presume) there is no template file for
residue NOA. The message printed out in the primary output file looks like
this:

*** BAD RESIDUE LABEL NOA

%IMPACT-E (die): Fatal error at line 5

At present, the user has to separate the NOA molecule from the protein
residues in the PDB file, and read it in through type ligand:

build primary name hiv type protein read file hiv.pdb

build primary name noa type ligand read file noa.pdb

5.2 Runtime Problems
This section documents some situations when an Impact job may terminate
prematurely.

5.2.1 SHAKE problems
SHAKE is a commonly used algorithm for constraining bond lengths and (or)
bond angles in protein or solvent molecules, such as water. It is especially
useful for rigid water models such as SPC, TIP3P, and TIP4P. However,
the algorithm is only useful for small perturbations from their equilibrium
values. If the bond lengths are too far away from their equilibrium values,
the algorithm will encounter problems with numerical instability:

%IMPACT-W (ishake): SHAKE was not accomplished within 1000 iterations

%IMPACT-W (ishake): SHAKE was not accomplished within 1000 iterations

%IMPACT-W (ishake): SHAKE was not accomplished within 1000 iterations

The problem is usually due to a too-large timestep in molecular dynamics,
or the molecular structure is not well minimized. Thus, extremely large
repulsion forces might appear in van der Waals interactions, which results in
a large move in bond lengths. The way to avoid this problem is to check your
structure first, make sure it is well defined and minimized to some extent,
then try again. If it still fails, use smaller time steps.

148 Impact 5.5 Command Reference Manual



Chapter 5: Trouble Shooting

5.2.2 FMM problems
If you specify fmm in setmodel task, the program will call the FMM method
for calculating electrostatic interactions. Here is a common problem:

%IMPACT-W(FMM_load_bodies): particle out of box in FMM

%IMPACT-W(FMM_load_bodies): particle out of box in FMM

%IMPACT-W(FMM_load_bodies): particle out of box in FMM

%IMPACT-E(FMM_load_bodies) Too many particles out of box, check your timestep!

The problem usually appears when some particles move too much inside one
r-RESPA big time step (or one VERLET time step). The box size, which is
updated after every big time step in r-RESPA, might not be large enough
to hold all the particles, thus some particles move out of the range of box
size. Of course, the real underlying reason for this problem is similar to
that in SHAKE, a too-large timestep in molecular dynamics, or an ill-defined
molecular structure is used. Thus, the way to avoid this problem is similar
to that in SHAKE, i.e., check your structure first, make sure it is well defined
and minimized to some extent, then try again. If the problem still appears,
use smaller time steps.

5.2.3 Atom overlap problems
The program may stop if two or more atoms overlap in space. Impact checks
for atom overlaps in the very beginning when non-bonded lists are generated.
Here is one example error message:

%IMPACT-I(code): found all bond parameters for system

%IMPACT-I(code): found all bend parameters for system

%IMPACT-I(code): found all tors parameters for system

Moment of inertia tensor

0.46449E+07 0.90790E+06 0.87475E+06

0.90790E+06 0.45322E+07 -0.61956E+06

0.87475E+06 -0.61956E+06 0.43931E+07

Moment of inertia tensor after diagonalizing

0.29204E+07 0.90495E-10 0.17211E-08

0.90495E-10 0.50757E+07 -0.17493E-08

0.17211E-08 -0.17493E-08 0.55741E+07

Maximum distance along x,y,z-axis

0.61017E+02 0.38485E+02 0.35377E+02

Solutes are rotated 90 degree about y-axis

Maximum distance along x,y,z-axis after the rotation

0.35377E+02 0.38485E+02 0.61017E+02

%IMPACT-I (trans): The system will be rotated to align the principal

axis with the largest eigenvalue along the diagonal

Maximum distance along coordinate axis after the rotation

0.46611E+02 0.44300E+02 0.45865E+02

%IMPACT-I (allocnb): Verlet list size = 261232

%IMPACT-I (allochb): Hydrogen bond list size = 206421

%IMPACT-E (die): At line 29

%IMPACT-E: TWO ATOMS HAVE THE SAME COORDINATES

The program stops because it finds that two or more atoms overlap. This
may happen when missing H atoms generated by Impact sit on top of other

Impact 5.5 Command Reference Manual 149



Chapter 5: Trouble Shooting

H atoms that already exist in a PDB file (usually those H atoms were gener-
ated by other programs, such as MacroModel or ChemEdit, etc.). Another
possible cause of this problem is that some atoms’ coordinates were not ini-
tialized to correct values, but are all zero. This is especially likely to happen
in simulations with explicit solvent. The program needs to know the coor-
dinates of solvent water molecules either by reading from a restart file or
by reading from an old equilibrated water box (e.g., spchoh.dat, tip4p.dat).
If a restart file is not used, no water atom coordinates will be assigned and
FORTRAN code will initialize them all to zero. Thus they “overlap” in space.
Here is an example of an incorrect input file:

!! Timings for testing protein/water system

write verbose 3 file test.out title test *

CREAT

build primary name test type protein read file test.pdb

read coordinates name test brookhaven file test.pdb

build solvent name agua type spc nmol 10000 h2o

QUIT

SETMODEL

setpotential

mmechanics

quit

energy molcutoff name agua

read parm file paramstd.dat noprint

!==> solvent old file spchoh.dat bx 68 by 68 bz 68

solute translate rotate diagonal

enrg parm cutoff 9.0 -

listupdate 20 diel 1.0 nodist print 1

enrg periodic name test bx 68 by 68 bz 68

enrg periodic name agua bx 68 by 68 bz 68

enrg cons bond

QUIT

MINIMIZE

input cntl mxcyc 1000

steepest dx0 0.01 dxm 1.0

!==> read restart box coordinates formatted file testh2o.min

run

write restart box coordinates formatted file testh2o.min

QUIT

END

The solution is to uncomment either of the two commented out (!==> ****)
command lines.

5.2.4 Atomtyping problems
The automatic atomtyping code will assign atom types and parameters for
virtually any kind of molecule or ion if the structure is well defined, i.e.,
if all missing H atoms are included and bond lengths are reasonable. If a

150 Impact 5.5 Command Reference Manual



Chapter 5: Trouble Shooting

structure is not well defined, i.e., if there are too many isolated atoms or too
many atoms with bonds exceeding their maximum numbers, the atomtyping
code will get confused. Here is an example of an output message:

%IMPACT-I(newres): Input template file is a PDB file

%IMPACT-I(newres): build template for this molecule

Warning: too many bonds for atom H25 : nconn=2 max=1

Warning: too many bonds for atom H26 : nconn=3 max=1

Warning: too many bonds for atom H27 : nconn=3 max=1

Warning: atom H30 is isolated

Warning: atom H31 is isolated

Warning: atom H32 is isolated

Warning: atom H33 is isolated

Warning: too many bonds for atom H37 : nconn=2 max=1

Warning: too many bonds for atom H38 : nconn=2 max=1

Warning: too many bonds for atom H40 : nconn=2 max=1

Warning: too many bonds for atom H41 : nconn=2 max=1

Warning: atom H42 is isolated

Warning: atom H43 is isolated

Warning: atom H44 is isolated

Error: Too many exceptions in connection table, check your molecule

Impact will try to adjust the connection table to resolve these issues, but
will stop if too many problems are encountered. Such problems can occur
when structures are used that have been converted from other programs,
especially structures converted from 2D to 3D. A solution may be to use a
program that has a builder, such as Maestro or ChemEdit, to rebuild the
molecule.

Impact 5.5 Command Reference Manual 151



Chapter 5: Trouble Shooting

152 Impact 5.5 Command Reference Manual



Function Index

Function Index

(
( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

-
-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

[
[ ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A
accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
active_reg_incr . . . . . . . . . . . . . . . . . . . . 38
actives [maestro | sd] afile fname

. . . . . . . . . . . . . . . . . . . . . . . . . . . 119, 120
actxr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
actyr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
actzr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
agbnp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
alldist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
allprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
amideoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
anneal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
assign ligand . . . . . . . . . . . . . . . . . . . . . . . 70
atname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B
baddist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
best . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

box . . . . . . . . . . . . . . . . . . . . . 84, 85, 111, 122
boxxr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
boxyr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
boxzr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
bsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
buffer_reg_size . . . . . . . . . . . . . . . . . . . . 38
build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
build primary check . . . . . . . . . . . . . . . . 96
build primary type auto . . . . . . . . . . . . . 17
build solvent . . . . . . . . . . . . . . . . . . . . . . . 20
build types . . . . . . . . . . . . . . . . . . . . . . . . . 20
by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
by energy . . . . . . . . . . . . . . . . . . . . . . . . . . 125
by glidescore . . . . . . . . . . . . . . . . . . 89, 125
byspecies . . . . . . . . . . . . . . . . . . . . . . . 60, 65

C
call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
cavity_cutoff . . . . . . . . . . . . . . . . . . . . . . 31
cdiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
center read . . . . . . . . . . . . . . . . . . . . . . . . 111
char . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
clean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
cmae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
cminit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
cminit lig . . . . . . . . . . . . . . . . . . . . . . . . . 115
cminit zero . . . . . . . . . . . . . . . . . . . . . . . . 115
cntl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60, 65
collect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
concat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
confgen . . . . . . . . . . . . . . . . . . . . . . . . 91, 117
conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
consatom . . . . . . . . . . . . . . . . . . . . . . 101, 108
consname . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
consolv [sgb] . . . . . . . . . . . . . . . . . . . . . . . 29
consolv agbnp . . . . . . . . . . . . . . . . . . . . . . . 32
consolv pbf . . . . . . . . . . . . . . . . . . . . . . . . . 30
consolv pbf npsolv . . . . . . . . . . . . . . . . . . 35
consolv sgb . . . . . . . . . . . . . . . . . . . . . . . . . 29
constitle . . . . . . . . . . . . . . . . . . . . . . . . . 108
constraints . . . . . . . . . . . . 23, 36, 101, 107
convert . . . . . . . . . . . . . . . . . . . . . . . . . 62, 67
corescale . . . . . . . . . . . . . . . . . . . . . . . . . 118
create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Impact 5.5 Command Reference Manual 153



Function Index

csoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
cutoff. . . . . . . . . . . . . . . . . . . 25, 29, 31, 126
cwall, csoft . . . . . . . . . . . . . . . . . . . . . . . 105
cycgap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
cycrec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

D
debug . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 32
delpose . . . . . . . . . . . . . . . . . . . . . . . . 89, 127
delt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 65
deltae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
density . . . . . . . . . . . . . . . . . . . . . . . . . 39, 61
DICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
dielco . . . . . . . . . . . . . . . . . . . . . . . . . 90, 123
dielectric . . . . . . . . . . . . . . . . . . . . . . . . . 25
distance . . . . . . . . . . . . . . . . . . . . . . . 25, 144
dock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
dock_grid_size . . . . . . . . . . . . . . . . . . . . . 38
docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
dvdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
dx0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
dxm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
dxm/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
dynamics . . . . . . . . . . . . . . . . . . . . . . . . 57, 60

E
echooff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
echoon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ecut . . . . . . . . . . . . . . . . . . . . . . . . . . . 96, 117
ecvdw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
endif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
ENDWHILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
epsout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
eq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
every . . . . . . . . . . . . . . . . . . . . . . . . . . . 59, 71
ewald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
external . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
external file . . . . . . . . . . . . . . . . . . . . . . 126

F
fast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 67
featurefile . . . . . . . . . . . . . . . . . . . . . . . 108
featverb . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
file . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 23, 71

final . . . . . . . . . . . . . . . . . . . . . . . . . . 85, 124
finalonly . . . . . . . . . . . . . . . . . . . . . . . . . 109
flex . . . . . . . . . . . . . . . . . . . . . . . . . . . 91, 123
fmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
fobo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21
force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
formatted . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
forspecies . . . . . . . . . . . . . . . . . . . . . . 60, 65
fos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21
fresidue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ftol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
functions . . . . . . . . . . . . . . . . . . . . . . . . . 139

G
ge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Glide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
GLIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
goto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
GOTO ABORT . . . . . . . . . . . . . . . . . . . . . . . . . . 97
GOTO BREAK . . . . . . . . . . . . . . . . . . . . . . . . . . 97
gotostruct . . . . . . . . . . . . . . . . . . . . . . . . . 19
gotostruct ’startlig’ . . . . . . . . . . . . . . 97
grdist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
greedy . . . . . . . . . . . . . . . . . . . . . . 78, 84, 122
grid_size . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
gt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

H
h2o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
hbfilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
hbpenal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
high_res . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
highacc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
histogram . . . . . . . . . . . . . . . . . . . . . . . . . 143
hmass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
HMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
hydrogen_radius . . . . . . . . . . . . . . . . . . . . 38

I
if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
IF ’buildcheck’ LT 0 . . . . . . . . . . . . 96, 97
ifo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21
Impact output of Glide . . . . . . . . . . . . . 128
inactives [maestro | sd] ifile fname

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

154 Impact 5.5 Command Reference Manual



Function Index

init rand [cmrange val] [thetarange

val] [phirange val] [psirange

val] [seed num] . . . . . . . . . . . . . . . 114
init read xcm val ycm val zcm val phi

val theta val psi val . . . . . . . . . 114
init zero . . . . . . . . . . . . . . . . . . . . . . . . . . 114
input . . . . . . . . . . . . . . . . . . . . . . . . . . . 60, 65
input cntl . . . . . . . . . . . . . . . . . . . . . . . . . . 71
intermolecular . . . . . . . . . . . . . . . . . . . . . 36
intramolecular . . . . . . . . . . . . . . . . . . . . . 36
itmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

J
jrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
jtemp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
jwalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

K
keep . . . . . . . . . . . . . . . . . . . . . . . 39, 113, 127
keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
kmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

L
le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
lewis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21
LIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
ligand . . . . . . . . . . . . . . . . . . . . . . . . . 87, 113
ligand keep . . . . . . . . . . . . . . . . . . . . . . . . . 90
ligand name lig . . . . . . . . . . . . . . . . . . . . . 89
lists . . . . . . . . . . . . . . . . . . . . . . . . . 132, 146
listupdate . . . . . . . . . . . . . . . . . . . . . . . . . 25
loosedock . . . . . . . . . . . . . . . . . . . . . . . . . 109
loosegrid . . . . . . . . . . . . . . . . . . . . . . . . . 109
low_res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
lresidue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
LRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
lstdist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
lt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

M
maestro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
maxconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
maxcore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
maxhard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
maxit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
maxiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

maxkeep . . . . . . . . . . . . . . . . . . . . . . . . 88, 121
maxperlig . . . . . . . . . . . . . . . . . . . . . . 89, 126
maxpole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
maxref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
maxsoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
med_res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
medium . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 67
metalbind [DEPRECATED] . . . . . . . . . . . . 110
metalfilt . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
min_grid_size . . . . . . . . . . . . . . . . . . . . . . 38
minimize . . . . . . . . . . . . . . . . 57, 79, 90, 123
minstep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
mmechanics . . . . . . . . . . . . . . . . . . . . . . . . . 26
molcutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
mole . . . . . . . . . . . . . . . . . . . . . . . 18, 107, 113
montecarlo . . . . . . . . . . . . . . . . . . . . . . . . . 57
multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
mxcyc . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, 65

N
name . . . . . . . . . . . . . . . . . . . . . 9, 18, 107, 113
name lig . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
name recep . . . . . . . . . . . . . . . . . . . . . . . . . . 82
ncon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
ncons . . . . . . . . . . . . . . . . . . . . . . . . . 101, 107
ncycle val . . . . . . . . . . . . . . . . . . . . . . . . . 124
new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
nextstruct . . . . . . . . . . . . . . . . . . . . . . 19, 97
nfill [DEPRECATED] . . . . . . . . . . . . . . . . 110
nfull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
nhscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
nlev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
nmdmc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
no14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
noangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
nobond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
nodistance . . . . . . . . . . . . . . . . . . . . . . . . . 25
noecons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
noel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
noel14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
noelec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
noforce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
nohb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
noprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
norecep . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
noringconf . . . . . . . . . . . . . . . . . . . . . . . . 118
norot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
noscore . . . . . . . . . . . . . . . . . . . . . . . . 90, 121

Impact 5.5 Command Reference Manual 155



Function Index

notail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
notestff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
notors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
novdw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
nphobic num file fname . . . . . . . . . . . . 107
nposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
nprnt . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 65
npsolv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
nreport . . . . . . . . . . . . . . . . . . . . . . . . 89, 126
nsec . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 112
nstep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
nusecons [DEPRECATED] . . . . . . . . . . . . . 110
nusephob [DEPRECATED] . . . . . . . . . . . . . 110

O
operations . . . . . . . . . . . . . . . . . . . . . . . . 139
OPLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
OPLS-AA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
OPLS2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
OPLS2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
outcutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
outlistupdate . . . . . . . . . . . . . . . . . . . . . . 26
overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

P
param (Liaison) . . . . . . . . . . . . . . . . . . . . 71
parameter . . . . . . . . . . . . . . . . . . . 85, 88, 116
parameter clean final . . . . . . . . . . . . . . 91
parm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
patype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
pbf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
pbfevery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
penalty val lowsim val highsim val

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
percent val . . . . . . . . . . . . . . . . . . . . . . . 119
periodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
pff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
plewis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
pparam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
printe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
printf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
protvdwscale . . . . . . . . . . . . . . . . . . . . . . . 83
put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
PUT ’i’ + 1 INTO ’i’ . . . . . . . . . . . . . . . . . 98
PUT ’startlig’ INTO ’i’ . . . . . . . . . . . . . 97

Q
QMMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
qmregion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
qmtransition . . . . . . . . . . . . . . . . . . . . . . . 51

R
rand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
RATTLE . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 65
rdiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
read . . . . . . . . . . . . . . . . . . 23, 26, 57, 62, 67
readf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
readgreed . . . . . . . . . . . . . . . . . . . . . . 88, 122
readscreen . . . . . . . . . . . . . . . . . . . . . 88, 121
readsurface . . . . . . . . . . . . . . . . . . . . . . . 112
recep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
receptor . . . . . . . . . . . . . . . . . . . . 82, 87, 106
reference . . . . . . . . . . . . . . . . . . . . . 114, 127
refine . . . . . . . . . . . . . . . . . . . . . . 79, 90, 123
reject val . . . . . . . . . . . . . . . . . . . . . . . . . 120
relax . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 65
report . . . . . . . . . . . . . . . . . . . . . . . . . 88, 125
report ... write filename ... . . . . . . 91
report collect. . . . . . . . . . . . . . . . . . . . . . 90
rescutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
resnumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
restcoef . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
restexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
rmscut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
rmspose . . . . . . . . . . . . . . . . . . . . . . . . 89, 127
rotations . . . . . . . . . . . . . . . . . . . . . . . 61, 66
rpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
rrespa . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 67
run . . . . . . . . . . . . . . . . . . 57, 62, 67, 85, 128

S
sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
scbsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
scorecut . . . . . . . . . . . . . . . . . . . . . . . 88, 121
scoring . . . . . . . . . . . . . . . . . . . . . . . . 90, 124
scr14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
screen . . . . . . . . . . . . 77, 84, 88, 89, 90, 121
scut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

156 Impact 5.5 Command Reference Manual



Function Index

sd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
seed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 65
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Set ffield . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Set force . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Set Noinvalidate . . . . . . . . . . . . . . . . . . . 16
set path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
setmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
setpotential . . . . . . . . . . . . . . . . . . . . . . . 26
setup . . . . . . . . . . . . . . . . . . . . . . 89, 116, 125
sgb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
sgbp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
SHAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 65
simil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
singlep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
skipb n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
smooth . . . . . . . . . . . . . . . . . . . . . 82, 104, 143
smooth anneal 2 . . . . . . . . . . . . . . . . . . . . . 90
smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
solute . . . . . . . . . . . . . . . . . . . . . . . . . . 38, 39
solvent . . . . . . . . . . . . . . . . . . . . . . . . . 20, 38
spawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
spc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
statistics . . . . . . . . . . . . . . . . . . . . . . 61, 66
statistics off . . . . . . . . . . . . . . . . . . 61, 66
statistics on . . . . . . . . . . . . . . . . . . . 61, 66
stdrot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
steepest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 66
stop rotations . . . . . . . . . . . . . . . . . . 61, 66
swalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

T
tagged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
target . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 66
taup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
testff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
tip4p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
tncut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
tnewton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
tol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61, 65
tphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
tpsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

U
unformatted . . . . . . . . . . . . . . . . . . . . . . . . 59
usecons [DEPRECATED] . . . . . . . . . . . . . . 110
usephob [DEPRECATED] . . . . . . . . . . . . . . 110

V
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
verbose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
verbosity . . . . . . . . . . . . . . . . . . . . . . . . . 116
verlet . . . . . . . . . . . . . . . . . . . . . . . . . . 62, 67
vsoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

W
weight constraints . . . . . . . . . . . . . . . . . 36
weight intermolecular . . . . . . . . . . . . . . 36
weight intramolecular . . . . . . . . . . . . . . 36
wfile fname . . . . . . . . . . . . . . . . . . . 119, 120
while . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
WHILE (’endlig’ LT 1 OR ’i’ LE

’endlig’) . . . . . . . . . . . . . . . . . . . . . . 97
with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
withonly . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
without . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
write . . . . . . . . . . . . . . . . . . . . . . . . 57, 62, 67
write filename fname . . . . . . . . . . . . . . 127
writecdie . . . . . . . . . . . . . . . . . . . . . . . . . 107
writecmsite . . . . . . . . . . . . . . . . . . . . . . . 122
writef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
writef 1ets_single_grid . . . . . . . . . . . . 83
writegreed . . . . . . . . . . . . . . . . . . . . . 85, 122
writerdie . . . . . . . . . . . . . . . . . . . . . . . . . 107
writescreen . . . . . . . . . . . . . . . . . . . . 85, 121
writesurface . . . . . . . . . . . . . . . . . . . . . . 112

X
xpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Y
ypos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Z
zonecons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
zpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Impact 5.5 Command Reference Manual 157



Function Index

158 Impact 5.5 Command Reference Manual



Concept Index

Concept Index

A
Active site . . . . . . . . . . . . . . . . . . . . . . . . . 106
Adaptive grid . . . . . . . . . . . . . . . . . . . . . . 106
Adding long-range corrections . . . . . . . . 27
Advanced Scripts . . . . . . . . . . . . . . . . . . . 144
AGBNP implicit solvent model . . . . . . . 32
Arithmetic operations . . . . . . . . . . . . . . . 139
Atom Types, automatic generation of

atom types . . . . . . . . . . . . . . . . . . . . . . 20
Atom types, printing . . . . . . . . . . . . . . . . . 21
Atoms, specifying . . . . . . . . . . . . . . . . . . . . . 9
Authors of Impact . . . . . . . . . . . . . . . . . . . . 1

B
Background in Impact . . . . . . . . . . . . . . 131
Binding energy prediction, Liaison . . . . 74
Bond constraints . . . . . . . . . . . . . . . . . . . . . 23
Bond distance . . . . . . . . . . . . . . . . . . . . . . 144
Boolean operators . . . . . . . . . . . . . . . . . . 142
Buffering atoms/regions . . . . . . . . . . . . . . 40
Building the molecular structure of the

solvent . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Building the simulation system . . . . . . . 17
By, function mapping . . . . . . . . . . . . . . . 139

C
Calling subroutines . . . . . . . . . . . . . . . . . 145
Collecting statistics . . . . . . . . . . . . . . . 61, 66
Colon notation . . . . . . . . . . . . . . . . . . . . . 136
Command language . . . . . . . . . . . . . . . . . 131
Comments in the input file . . . . . . . . . . . . 7
Communication between docking and

other tasks . . . . . . . . . . . . . . . . . . . . . 125
Conformation generation for docking

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Conjugate gradient. . . . . . . . . . . . . . . . . . . 55
Constant energy simulations . . . . . . . . . . 61
Constant pressure simulations . . . . . 27, 60
Constant temperature simulations . . . . . 61
Constant volume simulations . . . . . . . . . 60
Constraint regions . . . . . . . . . . . . . . . . . . . 40
Constraints . . . . . . . . . . . . . . . . . . . . . . 61, 65
Constraints, bonds or distances . . . . . . . 23
Constraints, distance and torsional . . . . 36

Constraints, Glide . . . . . . . . . . . . . . 101, 107
Constructs, programming . . . . . . . . . . . . 144
continuum solvent models . . . . . 29, 30, 32
Converting trajectories between the old

and the new formats. . . . . . . . . . 62, 67
Coordinates, reading and writing . . . . . . 57
Coulomb-vdW interaction energy, Glide

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79, 123
Create task . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Cutoff, molecular . . . . . . . . . . . . . . . . . . . . 22
Cutoff, residue-based . . . . . . . . . . . . . . . . . 22
Cutoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Cutoffs, read . . . . . . . . . . . . . . . . . . . . . . . . 25

D
Data directories . . . . . . . . . . . . . . . . . . . . . 15
Data representation . . . . . . . . . . . . . . . . . . 59
Data structures, lists . . . . . . . . . . . . . . . . 132
Decision making . . . . . . . . . . . . . . . . . . . . 144
Defining the model potential . . . . . . . . . . 26
Dependencies, machine . . . . . . . . . . . . . . . 59
DICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Dielectric constant . . . . . . . . . . . . . . . . . . . 25
Disposition of arrays . . . . . . . . . . . . . . . . 116
Distance constraints . . . . . . . . . . . . . . 23, 36
Distance, bond . . . . . . . . . . . . . . . . . . . . . 144
Distance-dependent dielectric . . . . . . . . . 25
Distances between sets of points . . . . . 144
DOCK task . . . . . . . . . . . . . . . . . . . . . . . . . 76
Docking a single conformation . . . . . . . . 86
Docking grid setup . . . . . . . . . . . . . . . . . . . 80
Docking multiple ligands . . . . . . . . . . . . . 91
Docking task . . . . . . . . . . . . . . . . . . . . . . . . 76
Docking, communication with other tasks

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Docking, conformation generation for

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Docking, output of . . . . . . . . . . . . . . . . . . 128
Docking, reporting results of . . . . . . . . . 125
Docking, running the calculation . . . . . 128
Docking, similarity scoring for . . . . . . . 118
Docking, smoothing functions for . . . . 104
Docking, specifying minimization phase of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Docking, specifying parameters for . . . 116

Impact 5.5 Command Reference Manual 159



Concept Index

Docking, specifying screening phase of
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Docking, specifying the ligand for . . . . 113
Docking, specifying the receptor for . . 106
Documentation, online . . . . . . . . . . . . . . . 14
Dynamics task . . . . . . . . . . . . . . . . . . . . . . . 60
Dynamics, input control parameters . . . 60
Dynamics, read . . . . . . . . . . . . . . . . . . . . . . 62
Dynamics, run . . . . . . . . . . . . . . . . . . . . . . . 62
Dynamics, write . . . . . . . . . . . . . . . . . . . . . 62

E
Energies, printing the . . . . . . . . . . . . . . . . 26
Energy parameters, reading . . . . . . . . . . . 22
Ewald summation . . . . . . . . . . . . . . . . 27, 28
Examining skipped rough-score sites . . 79,

123

F
Fast Multipole Method . . . . . . . . 25, 27, 28
Files, specifying . . . . . . . . . . . . . . . . . . . . . . . 8
Filters and parameters for Glide scoring

function . . . . . . . . . . . . . . . . . . . . . . . 124
Flexible docking . . . . . . . . . . . . . . . . . . . . . 91
Flow control . . . . . . . . . . . . . . . . . . . . . . . . 144
FMM . . . . . . . . . . . . . . . . . . . . . . . . 25, 27, 28
Force field . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Force field terms, printing . . . . . . . . . . . . 21
Force field, setting . . . . . . . . . . . . . . . . . . . 15
Freezing atoms/regions . . . . . . . . . . . . . . . 40
Function mapping . . . . . . . . . . . . . . . . . . 139
Functions in Impact . . . . . . . . . . . . . . . . . 139
Functions, applying over lists . . . . . . . . 139

G
Generalized Born solvent model . . . . . . . 29
Glide constraints . . . . . . . . . . . . . . . 101, 107
Glide energy minimization . . . . . . . 79, 123
Glide greedy scoring . . . . . . . . . . . . . 78, 122
Glide pose refinement . . . . . . . . . . . . 79, 123
Glide pose screening . . . . . . . . . . . . . 77, 121
Glide rough scoring . . . . . . . . . . . . . . 77, 121
Glide, communication with other tasks

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Glide, conformation generation for . . . 117
Glide, extra precision . . . . . . . . . . . . . . . 124
Glide, final scoring . . . . . . . . . . . . . . . . . . 124
Glide, flexible docking . . . . . . . . . . . . . . . . 91

Glide, grid setup for . . . . . . . . . . . . . . . . . 80
Glide, ligand recycling . . . . . . . . . . . . . . 124
Glide, multiple ligands . . . . . . . . . . . . . . . 91
Glide, output of . . . . . . . . . . . . . . . . . . . . 128
Glide, penalizing amide rotations . . . . 113
Glide, reporting results of . . . . . . . . . . . 125
Glide, requiring specific interactions

. . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 107
Glide, rigid docking . . . . . . . . . . . . . . . . . . 86
Glide, running the calculation . . . . . . . 128
Glide, scoring input structure(s) . . . . . . 99
Glide, similarity scoring for . . . . . . . . . . 118
Glide, single ligand . . . . . . . . . . . . . . . . . . 86
Glide, smoothing functions for . . . . . . . 104
Glide, specifying minimization phase of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Glide, specifying parameters for . . . . . . 116
Glide, specifying screening phase of . . 121
Glide, specifying the ligand for . . . . . . . 113
Glide, specifying the receptor for . . . . . 106
Glide, turning off amide rotations . . . . 113
GlideScore . . . . . . . . . . . . . . . . . . . . . . . . . 124
Goto, transfer of control . . . . . . . . . . . . . 145
Greedy scoring, Glide . . . . . . . . . . . . 78, 122
Grid box . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Grid energy minimization, Glide . . 79, 123
Grid setup for Glide . . . . . . . . . . . . . . . . . 80

H
HMC task . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
HMC, input control parameters . . . . . . . 65
HMC, read . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HMC, run . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
HMC, write . . . . . . . . . . . . . . . . . . . . . . . . . 67
Hybrid Monte Carlo, HMC . . . . . . . . . . . 64
Hyphen notation . . . . . . . . . . . . . . . . . . . . 137

I
if/else/endif . . . . . . . . . . . . . . . . . . . . . . . . 144
Impact Background . . . . . . . . . . . . . . . . . 131
Initial array sizes . . . . . . . . . . . . . . . . . . . 116
Initial pose . . . . . . . . . . . . . . . . . . . . . . . . . 113
Input control parameters for dynamics

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Input control parameters for HMC . . . . 65
Input files, reading . . . . . . . . . . . . . . . . . . . . 5
Input scripting language . . . . . . . . . . . . . 131
installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Integrator, multiple-time step . . . . . 62, 67

160 Impact 5.5 Command Reference Manual



Concept Index

Integrator, r-RESPA . . . . . . . . . . . . . . 62, 67
Integrator, Verlet . . . . . . . . . . . . . . . . . 62, 67
Internal lists . . . . . . . . . . . . . . . . . . . . . . . . 133

J
J-Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

L
Lewis structure checking/refinement . . 19,

21
Liaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Liaison, assigning ligand . . . . . . . . . . . . . . 70
Liaison, binding energy prediction . . . . . 74
Liaison, fitting . . . . . . . . . . . . . . . . . . . . . . . 72
Liaison, general overview . . . . . . . . . . . . . 68
Liaison, input control parameters . . . . . 71
Liaison, parameters . . . . . . . . . . . . . . . . . . 71
Liaison, prediction . . . . . . . . . . . . . . . . . . . 74
Liaison, selecting sampling method . . . . 71
Liaison, simulation . . . . . . . . . . . . . . . . . . . 72
Ligand-receptor docking . . . . . . . . . . . . . . 76
Linear Interaction Approximation (LIA)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Linear Response Method (LRM) . . . . . . 68
List operators . . . . . . . . . . . . . . . . . . . . . . 143
List selection . . . . . . . . . . . . . . . . . . . . . . . 138
List subsets . . . . . . . . . . . . . . . . . . . . 135, 138
Lists as data structures . . . . . . . . . . . . . 132
Lists as parameters . . . . . . . . . . . . . . . . . 146
Lists, creating . . . . . . . . . . . . . . . . . . . . . . 138
Lists, internal . . . . . . . . . . . . . . . . . . . . . . 133

M
Machine dependencies . . . . . . . . . . . . . . . . 59
Maestro files, writing . . . . . . . . . . . . . . . . . 57
Maestro properties, retaining . . . . . . . . . 16
Mapping of functions over lists . . . . . . . 139
mass, hydrogen atoms . . . . . . . . . . . . . . . . 26
Math functions . . . . . . . . . . . . . . . . . . . . . 139
Max/min distance between sets of points

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Minimization, beginning . . . . . . . . . . . . . . 57
Minimization, conjugate gradient . . . . . . 55
Minimization, output frequency . . . . . . . 55
Minimization, steepest descent . . . . . . . . 55
Minimization, truncated Newton . . . . . . 56
Molecular cutoff . . . . . . . . . . . . . . . . . . . . . 22

Molecular mechanics potential function
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Molecular structure, specifying the . . . . 17
Multiple-time step integrators . . . . . 62, 67

N
Naming atoms in commands . . . . . . . . . . . 9
Naming files in commands . . . . . . . . . . . . . 8
Naming residues in commands . . . . . . . . . 9
Naming species in commands . . . . . . . . . . 9
NOE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
NOE constraints, flag to add NOE

constraint term to potential function.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Nonbonded interactions . . . . . . . . . . . . . . 25
Nonbonded list update, read . . . . . . . . . . 25
Nonbonded list, outer . . . . . . . . . . . . . . . . 26
Nonbonded list, updating the . . . . . . . . . 25
Notation, colon . . . . . . . . . . . . . . . . . . . . . 136
Notation, hyphen . . . . . . . . . . . . . . . . . . . 137
Notation, underscore . . . . . . . . . . . . . . . . 135
Nuclear Overhauser Effect . . . . . . . . . . . . 27

O
Operations on data . . . . . . . . . . . . . . . . . 139
Outer neighbor list . . . . . . . . . . . . . . . . . . . 26
Output of docking task . . . . . . . . . . . . . . 128
Overview of Impact . . . . . . . . . . . . . . . . . . . 1

P
Parameters, dynamics . . . . . . . . . . . . . . . . 60
Parameters, HMC . . . . . . . . . . . . . . . . . . . 65
Parameters, read. . . . . . . . . . . . . . . . . . . . . 25
Parameters, setting . . . . . . . . . . . . . . . . . . 21
PDB files, reading and writing . . . . . . . . 57
Periodic boundary conditions . . . . . . . . . 22
PFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Poisson-Boltzmann solvent model . . . . . 30
Polarizable force field . . . . . . . . . . . . . . . . 35
Pose refinement, Glide . . . . . . . . . . . 79, 123
Potential, defining the model . . . . . . . . . 26
Potential, electrostatic . . . . . . . . . . . . . . . 28
Potential, Ewald summation. . . . . . . 27, 28
Potential, Fast Multipole Method . . . . . 28
Potential, long-range . . . . . . . . . . . . . . 27, 28
Potential, molecular mechanics . . . . . . . . 26
Potential, no truncation . . . . . . . . . . . . . . 28
Prediction, Liaison . . . . . . . . . . . . . . . . . . . 74

Impact 5.5 Command Reference Manual 161



Concept Index

Printing atom types . . . . . . . . . . . . . . . . . . 21
Printing force field terms . . . . . . . . . . . . . 21
Printing the energy terms . . . . . . . . . . . . 26
Programming statements . . . . . . . . . . . . 144
Protein Data Bank . . . . . . . . . . . . . . . . . . . 57

Q
QMMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
QMregion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
QSite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
QSite, transition state optimizations. . . 51

R
r-RESPA . . . . . . . . . . . . . . . . . . . . . . . . 62, 67
Random numbers . . . . . . . . . . . . . . . . . . . 143
Read dynamics . . . . . . . . . . . . . . . . . . . . . . 62
Read HMC . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Read parameters . . . . . . . . . . . . . . . . . . . . . 25
Reading and writing the coordinates (and

velocities) . . . . . . . . . . . . . . . . . . . . . . . 57
Reading energy parameters from a file

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Reading input files . . . . . . . . . . . . . . . . . . . . 5
Reading machine-independent trajectory

files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Reading structure files . . . . . . . . . . . . . . . 17
Reading the model energy parameters

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Regions, constraining . . . . . . . . . . . . . . . . 40
Relational operators . . . . . . . . . . . . . . . . 142
Removing excess solvent . . . . . . . . . . . . . . 38
Reporting results of docking . . . . . . . . . 125
Requiring specific interactions in Glide

. . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 107
Residue-based cutoff . . . . . . . . . . . . . . . . . 22
Residues, specifying . . . . . . . . . . . . . . . . . . . 9
Restart files, reading and writing . . . . . . 57
Returning from subroutines . . . . . . . . . . 145
Reversible RESPA . . . . . . . . . . . . 28, 62, 67
Rigid docking . . . . . . . . . . . . . . . . . . . . . . . 86
Rough scoring, Glide . . . . . . . . . . . . 77, 121
Rough-score improvements . . . . . . . . . . . 78
run Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Run, dynamics . . . . . . . . . . . . . . . . . . . . . . 62
Run, HMC . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Running shell processes . . . . . . . . . . . . . 145
Running the docking calculation . . . . . 128
Running the MD simulation . . . . . . . 62, 67

S
S-Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
sampling method for Liaison . . . . . . . . . . 71
Saving a snapshot of the system . . . . . . 57
SCHRODINGER envirionment variable . . . 147
Score in Place . . . . . . . . . . . . . . . . . . . . . . . 99
Scripting language . . . . . . . . . . . . . . . . . . 131
Setmodel task . . . . . . . . . . . . . . . . . . . . . . . 21
Setting the directory search path . . . . . . 15
Setting the force field . . . . . . . . . . . . . . . . 15
Setting the model parameters . . . . . . . . . 21
Setup System . . . . . . . . . . . . . . . . . . . . . . . . 15
SGB, setting parameters . . . . . . . . . . . . . 37
Similarity scoring for Glide ligands . . . 118
Simulation, specifying the system . . . . . 17
Single-point scoring (Glide) . . . . . . . . . . . 99
Smoothing functions for docking . . . . . 104
Smoothing out the rough score . . . 78, 122
Soaking a system . . . . . . . . . . . . . . . . . . . . 20
Solute, adding . . . . . . . . . . . . . . . . . . . . . . . 38
Solute, centering . . . . . . . . . . . . . . . . . . . . . 39
Solute, rotating . . . . . . . . . . . . . . . . . . . . . . 39
Solvent, removing excess . . . . . . . . . . . . . 38
Solvent, specifying the molecular nature of

the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SPC water model . . . . . . . . . . . . . . . . . . . . 20
Species, specifying . . . . . . . . . . . . . . . . . . . . 9
Specifying a data directory . . . . . . . . . . . 15
Specifying atoms by name . . . . . . . . . . . . . 9
Specifying docking output . . . . . . . . . . . 125
Specifying files by name . . . . . . . . . . . . . . . 8
Specifying final scoring function for Glide

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Specifying Glide output . . . . . . . . . . . . . 125
Specifying minimization phase of docking

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Specifying parameters for docking . . . . 116
Specifying residues by number . . . . . . . . . 9
Specifying screening phase of docking

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Specifying species by name . . . . . . . . . . . . 9
Specifying the force field . . . . . . . . . . . . . 15
Specifying the ligand for docking . . . . . 113
Specifying the receptor for docking . . . 106
Statements, programming . . . . . . . . . . . 144
Steepest descent . . . . . . . . . . . . . . . . . . . . . 55
Structure files, reading . . . . . . . . . . . . . . . 17
Subroutines, calling . . . . . . . . . . . . . . . . . 145
Subsets of lists . . . . . . . . . . . . . . . . . 135, 138
Subtasks, description . . . . . . . . . . . . . . 7, 15

162 Impact 5.5 Command Reference Manual



Concept Index

Surface Generalized Born solvent model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

System, building the . . . . . . . . . . . . . . . . . 17
System, soaking the . . . . . . . . . . . . . . . . . . 20

T
Tail corrections . . . . . . . . . . . . . . . . . . . . . . 27
Task create . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Task docking . . . . . . . . . . . . . . . . . . . . . . . . 76
Task dynamics . . . . . . . . . . . . . . . . . . . . . . . 60
Task HMC . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Task LIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Task LRM . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Task setmodel . . . . . . . . . . . . . . . . . . . . . . . 21
Tasks and subtasks . . . . . . . . . . . . . . . . . . . 7
Tasks, description . . . . . . . . . . . . . . . . . 7, 15
Temperature, dynamics . . . . . . . . . . . . . . 60
Temperature, HMC . . . . . . . . . . . . . . . . . . 65
TIP3P water model . . . . . . . . . . . . . . . . . . 20
TIP4P water model . . . . . . . . . . . . . . . . . . 20
Torsional constraints . . . . . . . . . . . . . . . . . 36
Trajectories, convert between the old and

the new formats . . . . . . . . . . . . . . 62, 67
Trajectories, reading and writing . . . . . . 57
Trajectory file format . . . . . . . . . . . . . . . . 59
Transfer of control, goto . . . . . . . . . . . . . 145
Trouble shooting . . . . . . . . . . . . . . . . . . . . 147
Truncated Newton . . . . . . . . . . . . . . . . . . . 56

U
Underscore notation . . . . . . . . . . . . . . . . 135
Updating the nonbonded list . . . . . . . . . . 25

V
Velocities, reading and writing . . . . . . . . 57
Verlet list . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

W
Water models. . . . . . . . . . . . . . . . . . . . . . . . 20
Water, immersing a solute in . . . . . . . . . 20
Weights, intermolecular . . . . . . . . . . . . . . 36
Weights, intramolecular . . . . . . . . . . . . . . 36
Weights, potential function . . . . . . . . . . . 35
Weights, restraining potentials . . . . . . . . 36
While loop . . . . . . . . . . . . . . . . . . . . . . . . . 144
Write dynamics . . . . . . . . . . . . . . . . . . . . . . 62
Write HMC . . . . . . . . . . . . . . . . . . . . . . . . . 67
Writing a snapshot of the system . . . . . . 57
Writing and reading the coordinates (and

velocities) . . . . . . . . . . . . . . . . . . . . . . . 57
Writing machine-independent trajectory

files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Z
Zones, constraining . . . . . . . . . . . . . . . . . . 40

Impact 5.5 Command Reference Manual 163



Concept Index

164 Impact 5.5 Command Reference Manual



Table of Contents

1 Introduction to Impact . . . . . . . . . . . . . . . . . . . . . 1
1.1 A Brief History of Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Commercial Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Academic Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Major Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Hardware Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Structure File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Force Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7.1 OPLS-AA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.2 PFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Online Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Setup System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Set commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Set Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Set Ffield (or Set Force) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Set Noinvalidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Task Create. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Subtask Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1.1 Primary type Auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1.2 Solvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Task Setmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Subtask Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1.1 Periodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1.2 Molcutoff/Rescutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1.4 Constraint file format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1.5 Torsional Restraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1.6 Parm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Subtask Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Subtask Setpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3.1 Mmechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3.2 Mmechanics Pff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3.3 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.3.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4 Subtask Sgbp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.5 Subtask Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.6 Subtask Solute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Impact 5.5 Command Reference Manual i



2.3.6.1 Translate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.7 Subtask Zonecons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.7.1 Auto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.7.2 Freeze/Genbuffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.7.3 Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.7.4 Resseq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.7.5 Residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.7.6 Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.7.7 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.7.8 Example Zonecons Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.7.9 Zonecons Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.8 Subtask QMregion (QSite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.8.1 QSite Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.8.2 QM protein region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.8.3 Individual QM Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.8.4 QM Ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.8.5 Basis set specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.8.6 QSite energy/minimization: . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.8.7 QSite Transition State Optimization . . . . . . . . . . . . . . . . 51
2.3.8.8 Jaguar input section: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.8.9 Running QSite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Perform Simulations . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Task Minimize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Subtask Steepest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Subtask Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.3 Subtask Tnewton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.4 Subtask Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.5 Subtask Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.6 Subtasks Read and Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Task Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Subtask Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Subtask Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.3 Subtasks Read and Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.4 Subtask Convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Task Hybrid Monte Carlo (HMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.1 HMC Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Subtask Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.3 Subtask Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.4 Subtasks Read and Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.5 Subtask Convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Task Linear Response Method (Liaison, LRM, or LIA) . . . . . . . . 68
3.4.1 Liaison Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Subtask Assign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Subtask Param . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ii Impact 5.5 Command Reference Manual



3.4.4 Subtask Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.5 Subtask Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.6 Scripts for Liaison simulation and fitting. . . . . . . . . . . . . . . . . 72
3.4.7 Scripts for Liaison binding energy prediction . . . . . . . . . . . . . 74

3.5 Task Docking (DOCK or GLIDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.1 Description of the Docking Algorithm . . . . . . . . . . . . . . . . . . . 76
3.5.2 Example 1: Set up grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.3 Example 2: Single Ligand, Single Conformation . . . . . . . . . . 86
3.5.4 Example 3: Multiple Ligands, Flexible Docking . . . . . . . . . . 91
3.5.5 Example 4: Scoring in Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.5.6 Example 5: Glide Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5.7 Subtask Smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5.8 Subtask Receptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5.9 Subtask Ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.5.10 Subtask Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5.11 Subtask Confgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.12 Subtask Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.5.13 Subtask Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.5.14 Subtask Minimize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.5.15 Subtask Final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.5.16 Subtask Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.5.17 Subtask Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.5.18 Subtask Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.5.19 Results printed to Impact output . . . . . . . . . . . . . . . . . . . . . 128

4 Advanced Input Scripts . . . . . . . . . . . . . . . . . . 131
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.1.1 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.1.2 Internal Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.1.3 Subsets of Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.1.3.1 Underscore notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.1.3.2 Lists as arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.1.3.3 Colon notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.1.3.4 Hyphen notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.1.4 List Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.4.1 Put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.4.2 Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.1.5 List Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.5.1 With . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.5.2 Withonly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.5.3 Without . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.5.4 By . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2 Operations on Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.2.1 General Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.2.2 Relational Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Impact 5.5 Command Reference Manual iii



4.2.3 List Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2.3.1 Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2.3.2 Rand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2.3.3 Smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2.3.4 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2.3.5 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3 Advanced Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3.1 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3.1.1 While . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3.1.2 If/else/endif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3.1.3 Goto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3.2 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.3 Spawn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.4 Lists as Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5 Trouble Shooting . . . . . . . . . . . . . . . . . . . . . . . . 147
5.1 Problems Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.1 Environment variable SCHRODINGER not set. . . . . . . . . . . . . . 147
5.1.2 Bad residue label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Runtime Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.2.1 SHAKE problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.2.2 FMM problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.3 Atom overlap problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.4 Atomtyping problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Function Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Concept Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

iv Impact 5.5 Command Reference Manual


	Introduction to Impact
	A Brief History of Impact
	Commercial Versions
	Academic Versions

	Major Features
	Hardware Requirements
	Installation
	Input Files
	Structure File Formats
	Force Field
	OPLS-AA
	PFF

	Online Documentation

	Setup System
	Set commands
	Set Path
	Set Ffield (or Set Force)
	Set Noinvalidate

	Task Create
	Subtask Build
	Primary type Auto
	Solvent
	Types


	Task Setmodel
	Subtask Energy
	Periodic
	Molcutoff/Rescutoff
	Constraints
	Constraint file format
	Torsional Restraints
	Parm

	Subtask Read
	Subtask Setpotential
	Mmechanics
	Mmechanics Pff
	Weight
	Constraints

	Subtask Sgbp
	Subtask Mixture
	Subtask Solute
	Translate

	Subtask Zonecons
	Auto
	Freeze/Genbuffer
	Chain
	Resseq
	Residue
	Atom
	Sphere
	Example Zonecons Input
	Zonecons Keywords

	Subtask QMregion (QSite)
	QSite Overview
	QM protein region
	Individual QM Atoms
	QM Ions
	Basis set specifications.
	QSite energy/minimization:
	QSite Transition State Optimization
	Jaguar input section:
	Running QSite



	Perform Simulations
	Task Minimize
	Subtask Steepest
	Subtask Conjugate
	Subtask Tnewton
	Subtask Input
	Subtask Run
	Subtasks Read and Write

	Task Dynamics
	Subtask Input
	Subtask Run
	Subtasks Read and Write
	Subtask Convert

	Task Hybrid Monte Carlo (HMC)
	HMC Methodology
	Subtask Input
	Subtask Run
	Subtasks Read and Write
	Subtask Convert

	Task Linear Response Method (Liaison, LRM, or LIA)
	Liaison Overview
	Subtask Assign
	Subtask Param
	Subtask Input
	Subtask Sample
	Scripts for Liaison simulation and fitting
	Scripts for Liaison binding energy prediction

	Task Docking (DOCK or GLIDE)
	Description of the Docking Algorithm
	Example 1: Set up grids
	Example 2: Single Ligand, Single Conformation
	Example 3: Multiple Ligands, Flexible Docking
	Example 4: Scoring in Place
	Example 5: Glide Constraints
	Subtask Smooth
	Subtask Receptor
	Subtask Ligand
	Subtask Parameter
	Subtask Confgen
	Subtask Similarity
	Subtask Screen
	Subtask Minimize
	Subtask Final
	Subtask Scoring
	Subtask Report
	Subtask Run
	Results printed to Impact output


	Advanced Input Scripts
	Background
	Lists
	Internal Lists
	Subsets of Lists
	Underscore notation
	Lists as arrays
	Colon notation
	Hyphen notation

	List Creation
	Put
	Create

	List Selection
	With
	Withonly
	Without
	By


	Operations on Data
	General Operations
	Relational Operators
	List Operators
	Restore
	Rand
	Smooth
	Histogram
	Distance


	Advanced Scripts
	Flow Control
	While
	If/else/endif
	Goto

	Subroutines
	Spawn
	Lists as Parameters


	Trouble Shooting
	Problems Getting Started
	Environment variable SCHRODINGER not set.
	Bad residue label

	Runtime Problems
	SHAKE problems
	FMM problems
	Atom overlap problems
	Atomtyping problems


	Function Index
	Concept Index

